Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hydrogen generation from the methanolysis of ammonia borane catalyzed by in situ generated, polymer stabilized ruthenium(0) nanoclusters
Date
2011-07-19
Author
Erdogan, Huriye
Metin, Onder
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
Addressed herein is the detailed study on in situ generation of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized ruthenium(0) nanoclusters and their catalysis in the methanolysis of ammonia borane (AB). PVP-stabilized ruthenium(0) nanoclusters with an average particle size of 2.4 +/- 1.2 nm were generated in situ from the reduction of ruthenium(III) chloride during the methanolysis of AB in the presence of PVP at room temperature. The nanoclusters were characterized by UV-vis spectroscopy, TEM, XRD, XPS and FTIR techniques. PVP stabilized ruthenium(0) nanoclusters are highly active and stable catalyst in hydrogen generation from the methanolysis of AB with a turnover frequency (TOF) value of 4017 h(-1) and 71,500 turnovers over 25 h. Mercury poisoning experiments showed that the PVP-stabilized ruthenium(0) nanoclusters are the true heterogeneous catalyst in the methanolysis of AB. The report also includes the results of a detailed kinetic study on the hydrogen generation from the methanolysis of AB catalyzed by PVP stabilized ruthenium(0) nanoclusters investigating the effect of the catalyst concentration, substrate concentration, and temperature as well as the activation parameters of catalytic methanolysis of AB calculated from the kinetic data.
Subject Keywords
Ruthenium
,
Nanoclusters
,
Catalyst
,
PVP
,
Methanolysis
,
Ammonia borane
URI
https://hdl.handle.net/11511/62829
Journal
CATALYSIS TODAY
DOI
https://doi.org/10.1016/j.cattod.2010.08.024
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst
Rakap, Murat; Özkar, Saim (2010-04-01)
Previously being used as highly active catalyst in the hydrolysis of sodium borohydride, intrazeolite cobalt(0) nanoclusters were also employed as catalyst in the hydrolysis of ammonia-borane (H(3)NBH(3)). Intrazeolite cobalt(0) nanoclusters were found to be active catalyst in this hydrolysis reaction of ammonia-borane providing 5450 total turnovers at room temperature before deactivation. The results of the kinetic study shows that the catalytic hydrolysis of AB is first order with respect to the catalyst ...
Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite
Celik, Derya; Karahan, Senem; Zahmakiran, Mehmet; Özkar, Saim (2012-03-01)
Herein, we report the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite (Ca-10(OH)(2)(PO4)(6), HAP) and their catalytic use in the hydrolysis of hydrazine-borane, which attracts recent attention as promising hydrogen storage materials. Hydroxyapatite supported rhodium(0) nanoparticles were readily prepared by the hydrazine-borane reduction of rhodium(III)-exchanged hydroxyapatite in situ during the hydrolysis of hydrazine-borane at room temperature. Characterization of...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane
Metin, Oender; ŞAHİN ÜN, ŞULE; Özkar, Saim (2009-08-01)
Water-soluble poly(4-styrenesulfonic acid-co-maleic acid), PSSA-co-MA, stabilized ruthenium(0) and palladium(0) nanoclusters were for the first time prepared in situ from the reduction of ruthenium(III) chloride and potassium tetrachloropalladate(II), respectively, by ammonia-borane during its hydrolysis at room temperature. PSSA-co-MA stabilized ruthenium(0) and palladium(0) nanoclusters having average particle size of 1.9 +/- 0.5 and 3.5 +/- 1.6 nm, respectively, were isolated from the reaction solution a...
Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane
Özkar, Saim (2021-06-15)
Hydrogen Energy Publications LLCIt reviews the available reports on the preparation and use of magnetically separable transition metal nanoparticles (TMNs) as reusable catalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short introduction, the review starts with the papers on the employment of intrinsically magnetic TMNs as catalysts for releasing H2 gas from AB, which includes colloidal nanoparticles of intrinsically magnetic metals, TMNs in combination with materials having large ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Erdogan, O. Metin, and S. Özkar, “Hydrogen generation from the methanolysis of ammonia borane catalyzed by in situ generated, polymer stabilized ruthenium(0) nanoclusters,”
CATALYSIS TODAY
, pp. 93–98, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62829.