Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
TOWARD A MODEL-DRIVEN ENGINEERING FRAMEWORK FOR REPRODUCIBLE SIMULATION EXPERIMENT LIFECYCLE MANAGEMENT
Date
2014-12-10
Author
Teran-Somohano, Alejandro
Dayibas, Orcun
Yılmaz, Levent
Smith, Alice
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Goal-directed reproducible experimentation with simulation models is still a significant challenge. The underutilization of design of experiments, limited transparency in the collection and analysis of results, and ad-hoc adaptation of experiments as learning takes place continue to hamper reproducibility and hence cause a credibility gap. In this study, we propose a strategy that leverages the synergies between model-driven engineering, intelligent agent technology, and variability modeling to support the management of the lifecycle of a simulation experiment. Experiment design and workflow models are introduced for configurable experiment synthesis and execution. Feature-based variability modeling is used to design a family of experiments, which can be leveraged by ontology-driven software agents to configure, execute, and reproduce experiments. Online experiment adaptation is proposed as a strategy to facilitate dynamic experiment model updating as objectives shift from validation to variable screening, understanding, and optimization.
Subject Keywords
Design
URI
https://hdl.handle.net/11511/62879
Collections
Department of Chemical Engineering, Conference / Seminar