Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Optimum design of steel sway frames to BS5950 using harmony search algorithm
Date
2009-01-01
Author
Saka, M. P.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Harmony search method based optimum design algorithm is presented for the steel sway frames. The harmony search method is a numerical optimization technique developed recently that imitates the musical performance process which takes place when a musician searches for a better state of harmony. Jazz improvisation seeks to find musically pleasing harmony similar to the optimum design process which seeks to find the optimum solution. The optimum design algorithm developed imposes the behavioral and performance constraints in accordance with BS5950. The member grouping is allowed so that the same section can be adopted for each group. The combined strength constraints considered for a beam-column take into account the lateral torsional buckling of the member. The algorithm presented selects the appropriate sections for beams and columns of the steel frame from the list of 64 Universal Beam sections and 32 Universal Column sections of the British Code. This selection is carried out so that the design limitations are satisfied and the weight of steel frame is the minimum. The number of design examples considered to demonstrate the efficiency of the algorithm is presented.
Subject Keywords
Optimum Structural Design
,
Combinatorial Optimization
,
Stochastic Search Technique
,
Harmony Search Algorithm
,
Minimum Weight
,
Steel Frame
URI
https://hdl.handle.net/11511/63618
Journal
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
DOI
https://doi.org/10.1016/j.jcsr.2008.02.005
Collections
Department of Civil Engineering, Article