Finite element simulation of viscous incompressible laminar flow over two-dimensional bodies

Download
1991
Mohamed, Mohamud Abdirahman

Suggestions

Finite element modeling of micro particle separation using ultrasonic standing waves
Süleyman, Büyükkoçak; Çetin, Barbaros; Özer, Mehmet Bülent (2014-08-07)
Acoustophoresis which means separation of particles and cells using acoustic waves is becoming an intensive research subject. The method is based on inducing an ultrasonic compression standing wave inside a microchannel. A finite element approach is used to model the acoustic and electro-mechanical behavior of the piezoelectric material, the micro-channel geometry as well as the fluid inside the channel. The choices of silicon and PDMS materials are investigated as the chip materials for the resonator. A se...
Finite element simulation of visco-plastic deformation on micro-computers
Özkan, Cengiz Sinan; Tekkaya, Erman; Öztürk, Tayfur; Department of Metallurgical Engineering (1989)
Finite element simulation of rigid-plastic deformation on micro-computers
Gür, Cemil Hakan; Ankara, Alpay; Tekkaya, A. Erman; Department of Metallurgical Engineering (1989)
Finite element modeling of stress evolution in quenching process
Doğu, Doruk; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2005)
In this thesis the finite element computer code QUEANA simulating the quenching of axisymetric parts and determining the residual stress state was improved by adding pre- and post-processors. The code was further verified by additional numerical experiments and comparison of the results with commercial software أMARCؤ. The possible applications of this code are optimization of industrial quenching processes by controlling the evolution of internal stresses and dimensional changes.
Finite element study of biomagnetic fluid flow in a symmetrically stenosed channel
Turk, O.; Tezer, Münevver; Bozkaya, Canan (Elsevier BV, 2014-03-15)
The two-dimensional unsteady, laminar flow of a viscous, Newtonian, incompressible and electrically conducting biofluid in a channel with a stenosis, under the influence of a spatially varying magnetic field, is considered. The mathematical modeling of the problem results in a coupled nonlinear system of equations and is given in stream function-vorticity-temperature formulation for the numerical treatment. These equations together with their appropriate boundary conditions are solved iteratively using the ...
Citation Formats
M. A. Mohamed, “Finite element simulation of viscous incompressible laminar flow over two-dimensional bodies,” Middle East Technical University, 1991.