HARDENING ELASTIC-PLASTIC MATERIALS

1989-01-01
GAMER, U
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK

Suggestions

HARDENING NONLINEAR STIFFNESS BEHAVIOUR OF PIEZOELECTRIC MATERIALS WITH PASSIVE NONLINEAR P-N JUNCTION CAPACITANCE SHUNT CIRCUITS
Taşkıran, Muhammed Ali; Özer, Mehmet Bülent; Department of Mechanical Engineering (2021-9-06)
Piezoelectric materials are electromechanical energy transducers. They can be utilized actively when energized electrically or passively when connected to a passive shunt circuit. Due to this, they have been suggested for several vibrations suppression and energy harvesting applications. In this thesis, a novel way to attain passive hardening stiffness was suggested by introducing an electrical component for passive nonlinear piezoelectric vibration isolation or energy harvesting. Since piezoelectric materi...
Hardenability of steels.
Ankara, Alpay; Department of Mechanical Engineering (1961)
Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
Meyva, Y.; Kaynak, Cevdet (2015-11-01)
The purpose of this study was to improve toughness of inherently very brittle polylactide (PLA) without sacrificing strength and thermal properties, so that biopolymer PLA could be used in engineering applications. For this purpose, PLA was blended with various amounts of two different thermoplastic elastomers; TPU (petroleum-based thermoplastic polyurethane) and TPE (bio-based thermoplastic polyester). Melt blending and specimen shaping were achieved by using a twin-screw extruder and injection molder, res...
Toughening of Polylactide PLA by Blending with Elastomeric Materials
Kaynak, Cevdet (null; 2016-01-15)
Toughening of polylactide by blending with various elastomeric materials
Meyva, Yelda; Kaynak, Cevdet; Department of Polymer Science and Technology (2014)
The purpose of the first part of this thesis was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase s...
Citation Formats
U. GAMER, “HARDENING ELASTIC-PLASTIC MATERIALS,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, pp. 0–0, 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64202.