Pure gauge spin-orbit couplings

Shikakhwa, M. S.
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2 x 2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but theta-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.


Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Non-Abelian gauge theories of the Yang-Mills type
Abuhatab, Ahmed; Başkal, Sibel; Department of Physics (2003)
In this thesis, starting from the effective Lagrangians of the standard Yang-Mills, higher derivative Yang-Mills and the Chern-Simons- Yang-Mills theories, we have given the corresponding field equations and the symmetric gauge invariant energy- momentum tensors. Lagrangians containing higher derivative terms have been found useful for discussing the long lange effects of the gluon fields. A numeri cal solution is found for a spherically symmetric static gauge potential. On the other hand, Chern-Simons- Yan...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Backward stochastic differential equations and Feynman-Kac formula in the presence of jump processes
İncegül Yücetürk, Cansu; Yolcu Okur, Yeliz; Hayfavi, Azize; Department of Financial Mathematics (2013)
Backward Stochastic Differential Equations (BSDEs) appear as a new class of stochastic differential equations, with a given value at the terminal time T. The application area of the BSDEs is conceptually wide which is known only for forty years. In financial mathematics, El Karoui, Peng and Quenez have a fundamental and significant article called “Backward Stochastic Differential Equations in Finance” (1997) which is taken as a groundwork for this thesis. In this thesis we follow the following steps: Firstl...
Citation Formats
M. S. Shikakhwa, “Pure gauge spin-orbit couplings,” EUROPEAN PHYSICAL JOURNAL PLUS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64219.