Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy consumption characteristics of turn-mill machining
Date
2017-07-01
Author
Moradnazhad, Mariyeh
ÜNVER, HAKKI ÖZGÜR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
Reducing the energy consumption of manufacturing processes and machine tools can considerably affect the environmental and economic impact of industrial activities. Since the 2008 global financial crisis, many scholars have focused on modeling the energy consumption of basic machining processes such as turning, milling or grinding, etc., and investigated the consumption characteristics of related machine tools. At the same time, various industries have increased their use of more complex and hybrid machine tool systems such as turn-mill machines; these advanced systems have part and operation flexibility and can be set up in a relatively short amount of time. As the complexity of these typically high-precision machining systems increases, understanding their energy consumption characteristics becomes more difficult. This study aimed to develop a generic energy model for turn-mill machine tools and related processes in order to predict the energy consumption of complex parts with both turn and mill features. The generic prediction model is adapted to a high precision, high-end turn-mill machine tool and further verified by two case studies. The results of the first case study revealed that the energy estimation model developed in this study had a 95% accuracy in estimating the energy consumption of a workpiece with both milling and turning features. The second case study investigated energy consumption of orthogonal turn-milling process with a high material removal rate (MRR), first time in literature. The results of this second case study indicate that even though the power requirements of turn-milling are higher than conventional rough cut turning, the high MRR results in a lower total energy consumed per feature.
Subject Keywords
Energy consumption
,
Turn-mill machine tools
,
Orthogonal turn-milling process
URI
https://hdl.handle.net/11511/64712
Journal
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
DOI
https://doi.org/10.1007/s00170-016-9868-6
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Energy consumption modeling of turn-mill systems and related machining processes
Moradnazhad, Mariyeh; Akkök, Metin; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
In this thesis, a generic energy consumption model is developed for turn-mill systems which could be adopted for all turn-mill machine tools. Also energy characterization studies is performed to a turn-mill machine tool in order to validate the presented model and a methodology is created to develop a feature based energy consumption model for this turn-mill system considering cutting parameters during cutting operations of 304 stainless steel. This model predicts the energy consumption of the turn-mill mac...
Energy efficiency of machining operations: A review
Moradnazhad, Mariyeh; ÜNVER, HAKKI ÖZGÜR (SAGE Publications, 2017-09-01)
Manufacturing processes are among the most energy intensive on earth. As negative ecological and economic impacts increase, reducing energy consumption is becoming critically important. In this article, a comprehensive overview of energy-saving strategies and opportunities for increasing energy efficiency in manufacturing operations is presented, with a focus on metal cutting processes. The issues and approaches involved in energy efficiency of machine tools and machining operations are reported in the lite...
Energy performance of smart buildings: simulating the impact of active systems and passive strategies
Tetik, Buğra; Elias Özkan, Soofia Tahira; Department of Building Science in Architecture (2014)
Energy efficiency is one of the most important attempts in the world because of various environmental, economical and developmental aspects of energy. In this context, energy performance of buildings has been a critical issue since buildings constitute approximately half of total energy consumption. The concept of smart building which has been attractive recently, contributes to the issue with smart technologies; while some passive design techniques which have been used throughout the history are still appl...
Thermal bridge detailing in tunnel form buildings with passive house principles
Yılmaz, Derya; Tanyer, Ali Murat; Department of Building Science in Architecture (2014)
As a result of depleting fossil fuels, increased energy prices and global warming, the growing importance of energy efficiency given birth to spread construction of energy saving buildings and use of new technologies around the world. Since thermal bridges in buildings may cause excessive heat loss, mold growth and deterioration of indoor air quality; to eliminate thermal bridges becomes very crucial both in existing buildings and in energy efficient buildings. In this thesis, energy demand of a six storey ...
Stability of double emulsions for food applications
Yıldırım, Merve; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2015)
Double emulsion technology has potential effect on development of diversity and quality of functional foods by decreasing the oil and salt concentration, encapsulating and controlled release of valuable components. In this study, it was aimed to formulate stable double emulsions to be used for reduction of oil content of mayonnaise samples. W1/O ratios of primary emulsions, stabilized by polyglycerol polyricinoleate, were designed as 2:8, and 4:6, and (W1/O)/W2 ratios of double emulsions were 2:8, and 4:6. ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Moradnazhad and H. Ö. ÜNVER, “Energy consumption characteristics of turn-mill machining,”
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
, pp. 1991–2016, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64712.