Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy efficiency of machining operations: A review
Date
2017-09-01
Author
Moradnazhad, Mariyeh
ÜNVER, HAKKI ÖZGÜR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
Manufacturing processes are among the most energy intensive on earth. As negative ecological and economic impacts increase, reducing energy consumption is becoming critically important. In this article, a comprehensive overview of energy-saving strategies and opportunities for increasing energy efficiency in manufacturing operations is presented, with a focus on metal cutting processes. The issues and approaches involved in energy efficiency of machine tools and machining operations are reported in the literature and a structured research methodology is proposed for this purpose including prediction and modelling of machine energy consumption, determining the relationship between process energy consumption and process variables for material removal processes and optimization of cutting parameters in order to reduce energy consumption. Numerous techniques for increasing energy efficiency in manufacturing processes are identified and summarized, strengths and weaknesses of previous studies are discussed and potential avenues for future research are suggested.
Subject Keywords
Mechanical Engineering
,
Industrial and Manufacturing Engineering
URI
https://hdl.handle.net/11511/65400
Journal
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE
DOI
https://doi.org/10.1177/0954405415619345
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Particle Velocity, Solids Hold-Up, and Solids Flux Distributions in Conical Spouted Beds Operating with Heavy Particles
Külah, Görkem; KÖKSAL, MURAT (American Chemical Society (ACS), 2016-03-23)
Conical spouted beds operating with high density particles have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors. To design, scale-up, and manufacture these coaters, detailed investigation of local flow structure is of paramount importance. Therefore, in this study, local instantaneous particle velocity and solids hold-up and flux measurements were carried out in spouted beds having a wide range of cone angles (30, 45, 60) using zirconia p...
Energy-exergy and economic analyses of a hybrid solar-hydrogen renewable energy system in Ankara, Turkey
ÖZDEN, Ender; Tarı, İlker (Elsevier BV, 2016-04-25)
A hybrid (Solar-Hydrogen) stand-alone renewable energy system that consists of photovoltaic panels (PV), Proton Exchange Membrane (PEM) fuel cells, PEM based electrolyzers and hydrogen storage is investigated by developing a complete model of the system using TRNSYS. The PV panels are mounted on a tiltable platform to improve the performance of the system by monthly adjustments of the tilt angle. The total area of the PV panels is 300 m(2), the PEM fuel cell capacity is 5 kW, and the hydrogen storage is at ...
Free forming of locally heated specimens
Okman, O.; Ozmen, M.; Huwiler, H.; Tekkaya, A. E. (Elsevier BV, 2007-06-01)
A novel manufacturing method is investigated, in which a steep temperature gradient within the workpiece is induced to facilitate material flow locally. By this method, complex shapes can be formed without complicated dies. The feasibility of the idea is analyzed experimentally and numerically. Local heating is realized either by means of induction or laser heating. Experiments using materials 16MnCr5, X5CrNi18/9, and Ti6Al4V have been conducted under various process conditions. These experiments have also ...
Performance anallysis of an intermediate temperature solid oxide fuel cell
Timurkutluk, Bora; Tarı, İlker; Department of Mechanical Engineering (2007)
An intermediate temperature solid oxide fuel cell (SOFC) is developed and its performance is investigated experimentally and theoretically. In the experimental program, a gadolinium doped ceria based membrane electrode group is developed with the tape casting and screen printing methodology and characterized. An experimental setup is devised for the performance measurement of SOFCs and the performance of produced cells is investigated over a range of parameters including the electrolyte thickness, the sinte...
Experimental based numerical approach for determination of volumetric heat transfer coefficients of modified graphite foams
GÜRÜF, GÜRŞAH; Solmus, Ismail; BİLEN, Kadir; Bayer, Özgür (Elsevier BV, 2020-06-25)
Graphite-based porous materials are emerging as attractive alternatives to metals for use as heat dissipation elements in thermal management applications. While having several desirable features such as high thermal conductivity and low density, graphite foam heat sinks also tend to have low permeability that can limit transport of working fluid within the component and result in inefficient heat transfer. In order to improve their heat dissipation performance, graphite foams can be modified by channels dri...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Moradnazhad and H. Ö. ÜNVER, “Energy efficiency of machining operations: A review,”
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE
, pp. 1871–1889, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65400.