Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimization and sensitivity of retaining structures
Date
1996-08-01
Author
Saribas, A
Erbatur, F
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
258
views
0
downloads
Cite This
This paper is concerned with optimum design and sensitivity of retaining structures. The optimum design formulation in terms of a constrained nonlinear programming problem, is given for reinforced concrete-cantilever retaining walls. The objective function may be chosen as the cost or weight of the wall. The solution is carried out by a specially prepared computer program (RETOPT). Illustrative problems are solved, and their results are presented and discussed. The formulation allows for a detailed sensitivity analysis to be made for selected design parameters, also depicted with numerical examples.
Subject Keywords
Sensitivity analysis
,
Parameters (statistics)
,
Structural design
,
Computer programming
,
Computer software
,
Concrete
,
Nonlinear analysis
,
Retaining structures
URI
https://hdl.handle.net/11511/65081
Journal
JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE
DOI
https://doi.org/10.1061/(asce)0733-9410(1996)122:8(649)
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
OPTIMIZATION AND SENSITIVITY OF PRESTRESSED CONCRETE BEAMS
ERBATUR, F; ALZAID, R; DAHMAN, NA (Elsevier BV, 1992-12-03)
This paper is concerned with the optimum design of prestressed concrete beams. Both minimum weight and minimum cost optimization formulations are given for simply supported beams having three different sections. Sensitivity of the optimum designs, with respect to various design parameters, are also discussed. The formulation is programmed for interactive use on micro-computers. An example is given and results are discussed.
Modeling of inelastic behavior of curved members with a mixed formulation beam element
Sarıtaş, Afşin (Elsevier BV, 2009-04-01)
The curved beam element in this paper is based on Hu-Washizu variational principle. The nonlinear response of the element arises from the integration of stress-strain relations over several control sections along the element length. The finite element approximation for the beam uses shape functions for stress resultants that satisfy equilibrium and discontinuous strains along the beam. No approximation for the beam displacement field is necessary in the formulation. The proposed element is free from membran...
Modeling of the nonlinear behavior of steel framed structures with semi rigid connections
Sarıtaş, Afşin; Özel, Halil Fırat (null; 2015-07-21)
A mixed formulation frame finite element with internal semi-rigid connections is presented for the nonlinear analysis of steel structures. Proposed element provides accurate responses for spread of inelasticity along element length by monitoring the nonlinear responses of several crosssections, where spread of inelasticity over each section is captured with fiber discretization. Each material point on the section considers inelastic coupling between normal stress and shear stress. The formulation of the ele...
Dynamic stiffness-based test systems for viscoelastic material characterization: Design considerations
Özgen, Gökhan Osman; Batihan, Ali Cagri (2012-07-24)
In this paper, several important design issues for viscoelastic material characterization test systems which utilize dynamic stiffness measurements are discussed. These discussions are focused on structural dynamics aspects of the design of these test systems. These test systems are used to experimentally obtain the complex modulus of viscoelastic solids such as rubber, plastics, etc. Various standards exist on dynamic stiffness-based viscoelastic material characterization test methods, which give general g...
Parametric Urban Design Thinking: Shared Patterns in Design by Algorithm and Design by Drawing
Çalışkan, Olgu; Ongun, Gokhan (2021-12-01)
The paper suggests a focused examination of the processes of drafting-based design and parametric design in urbanism. It discusses how spatial design's settled cognition would differ by using algorithmic systems through the altered relationships between the basic operations in design. To reveal the commonalities and distinctions between the two design methods, the authors present the detailed documentation of the workshop series, which experimented with both techniques within similar design contexts. By the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Saribas and F. Erbatur, “Optimization and sensitivity of retaining structures,”
JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE
, pp. 649–656, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65081.