Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm
Date
2010-07-08
Author
Rolland, Luc
Chandra, Rohitash
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
The G3-PCX genetic algorithm is compared with hybrid meta-heuristic approaches for solving the forward kinematics problem of the 6-6 general parallel manipulator. The G3-PCX shows improvements in terms of accuracy, response time and reliability. Several experiments confirm solving the given problem in less than 1 second. It also reports all the 16 unique real solutions which are verified by an exact algebraic method. This opens the way to simulation and certification applications.
Subject Keywords
Forward kinematics problem
,
Unique real solution
,
General parallel manipulator
URI
https://hdl.handle.net/11511/65106
Conference Name
18th CISM-IFToMM Symposium on Robot Design, Dynamics and Control
Collections
Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Forward Kinematics of the 3RPR planar Parallel Manipulators Using Real Coded Genetic Algorithms
Rolland, Luc; Chandra, Rohitash (2009-09-16)
This article examines Genetic Algorithms to solve the forward kinematics problem applied to planar parallel manipulators. Most of these manipulators can be modeled by the tripod 3-RPR.
Forward Kinematics of the 6-6 general Parallel Manipulator Using Real Coded Genetic Algorithms
Rolland, Luc; Chandra, Rohitash (2009-07-17)
This article examines an optimization method to solve the forward kinematics problem (FKP) applied to parallel manipulators. Based on Genetic Algorithms (GA), a non-linear equation system solving problem is converted into an optimization one. The majority of truly parallel manipulators can be modeled by the 6-6 which is an hexapod constituted by a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two ball joints. Parallel manipulator kinemat...
Exact Solutions of Effective Mass Dirac Equation with Non-PT-Symmetric and Non-Hermitian Exponential-type Potentials
Arda, Altug; Sever, Ramazan (2009-09-01)
By using a two-component approach to the one-dimensional effective mass Dirac equation, bound states are investigated under the effect of two new non-PT-symmetric and non-Hermitian exponential type potentials. It is observed that the Dirac equation can be mapped into a Schrodinger-like equation by rescaling one of the two Dirac wave functions in the case of the position-dependent mass. The energy levels and the corresponding Dirac eigenfunctions are found analytically.
Application of a Robust Multigrid Technique for the Parallel Solution of Initial-Boundary Value Problems
Martynenko, S.I.; Gökalp, İskender; Bakhtin, V.A.; Karaca, Mehmet; Toktaliev, P.D.; Semenev, P.A. (2022-12-01)
This article is devoted to the construction of a parallel multigrid algorithm for the numerical solution of (non)linear initial-boundary value problems (implicit schemes) based on a robust multigrid technique (RMT). A distinctive feature of the proposed algorithm is the possibility of the parallel solution of initial-boundary value problems and initial-boundary value problems in a unified manner involving 3m independent computers (threads, if the OpenMP parallelization technology is used), m = 1, 2, 3, …. C...
STABILITY OF CONTROL FORCES IN REDUNDANT MULTIBODY SYSTEMS
IDER, SK (1996-01-03)
In this paper inverse dynamics of redundant multibody systems using a minimum number of control forces is formulated. It is shown that the control forces and the task accelerations may become noncausal at certain configurations, yielding the dynamical equation set of the system to be singular. For a given set of tasks, each different set of actuators leads to a different system motion and also to different singular configurations. To avoid the singularities in the numerical solution, the dynamical equations...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Rolland and R. Chandra, “On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm,” Udine, ITALY, 2010, p. 117, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65106.