Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating
Date
2012-11-01
Author
Caglar, Ahmet
Yamali, Cemil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
Performance of a solar-assisted heat pump with an evacuated tubular collector has been analyzed both theoretically and experimentally. A domestic heating system has been designed, constructed and tested. The evacuated tubular solar collector has been used to achieve higher collector efficiencies. The effects of evaporation temperature on the heating capacity and performance of the system have been investigated. Evaporation temperature varies between 5.2 and 20.7 degrees C while storage tank temperature varies between 9 and 35 degrees C. The maximum value of the coefficient of performance of the solar assisted heat pump is obtained as 6.38 experimentally. The calculated and experimental results are seen to be in a good agreement. A cost analysis of the proposed system is made comparing with a non-solar heat pump system.
Subject Keywords
Solar-assisted heat pump
,
Heat pump
,
Vapor compression refrigeration cycle
,
COP
URI
https://hdl.handle.net/11511/65174
Journal
ENERGY AND BUILDINGS
DOI
https://doi.org/10.1016/j.enbuild.2012.08.003
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
Implementation of metal-based microchannel heat exchangers in a microrefrigeration cycle, and numerical and experimental investigation of surface roughness effects on flow boiling
Jafari Khousheh Mehr, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
A microscale vapor compression refrigeration cycle has been constructed for possible application in the thermal management of compact electronic components. The micro-evaporator and micro-condenser components have been fabricated using wire electron discharge machining and micromilling, respectively. Three microevaporators have been manufactured with different surface roughness for the experimental and numerical investigation of roughness effect on nucleate flow boiling in microchannels. In the numerical pa...
Heat dissipation from electronic packages on rotary platforms with the help of heat pipe networks
Çalışkan, Anıl; Tarı, İlker; Department of Mechanical Engineering (2015)
An electronics package on a rotary platform including two components with 600 W, one component with 350 W and one small component with 70 W heat dissipation rates (1620 W total heat load) is numerically and experimentally investigated under steady state conditions. In order to avoid rotary joints and to reduce the costs of design, maintenance and production, the thermal management solution for the heat dissipation is entirely placed on the rotary platform. The thermal management solution includes heat sinks...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Numerical investigation of forced convection thermal management of high power electronics on a rotary platform
Anıl, Calıskan; Tarı, İlker (null; 2015-08-12)
An package on a rotary platform including two components with 600 W, one component with 350 W and one small component with 70 W heat dissipation rates (1620 W total heat load) is numerically and experimentally investigated under steady state conditions. In order to avoid rotary joints and to reduce the cost, the thermal management solution for the heat dissipation is placed entirely on the rotary platform. The thermal management solution consists of heat sinks attached on vertical side surfaces of the platf...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Caglar and C. Yamali, “Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating,”
ENERGY AND BUILDINGS
, pp. 22–28, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65174.