Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural properties of beta-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations
Date
2018-11-01
Author
Kilic, Mehmet Emin
Alaei, Sholeh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
In recent years, one-dimensional (1D) magnetic nanostructures, such as magnetic nanorods and chains of magnetic nanoparticles have received great attentions due to the breadth of applications. Especially, magnetic nanorods has been opened an area of active research and applications in medicine, sensors, optofluidics, magnetic swimming, and microrheology since they possess the unique magnetic and geometric features. This study focuses on the molecular dynamics (MD) simulations of an infinitely long crystal beta-Fe2O3 nanorod. To elucidate the structural properties and dynamics behavior of beta-Fe2O3 nanorods, MD simulation is a powerful technique. The structural properties such as equation of state and radial distribution function of bulk beta-Fe2O3 are performed by lattice dynamics (LD) simulations. In this work, we consider three main mechanisms affecting on deformation characteristics of a beta-Fe2O3 nanorod: 1) temperature, 2) the rate of mechanical compression, and 3) the rate of mechanical torsion.
Subject Keywords
General Physics and Astronomy
,
General Materials Science
URI
https://hdl.handle.net/11511/65413
Journal
CURRENT APPLIED PHYSICS
DOI
https://doi.org/10.1016/j.cap.2018.07.019
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Structural Transitions in Cholesteric Liquid Crystal Droplets
Zhou, Ye; Büküşoğlu, Emre; Martinez-Gonzalez, Jose A.; Rahimi, Mohammad; Roberts, Tyler F; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L; de Pablo, Juan Jose (American Chemical Society (ACS), 2016-07-01)
Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted ...
Symmetry conditions for type II multiferroicity in commensurate magnetic structures
Perez-Mato, J. M.; Gallego, S. V.; Elcoro, L.; Tasci, E.; Aroyo, M. I. (IOP Publishing, 2016-07-20)
Type II multiferroics are magnetically ordered phases that exhibit ferroelectricity as a magnetic induced effect. We show that in single-k magnetic phases the presence in the paramagnetic phase of non-symmorphic symmetry combined with some specific type of magnetic propagation vector can be sufficient for the occurrence of this type of multiferroic behaviour. Other symmetry scenarios especially favourable for spin driven multiferroicity are also presented. We review and classify known type II multiferroics ...
Morphological evolution of voids by surface drift diffusion driven by capillary, electromigration, and thermal-stress gradients induced by steady-state heat flow in passivated metallic thin films and flip chip solder joints. I. Theory
Ogurtani, Tarik Omer; Akyildiz, Oncu (AIP Publishing, 2008-07-15)
The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not...
CHAOTIC ELECTRON TRAJECTORIES IN ELECTROMAGNETIC WIGGLER FREE-ELECTRON LASER WITH A GUIDE MAGNETIC-FIELD
BILIKMEN, S; OMAR, A (Springer Science and Business Media LLC, 1994-05-01)
The Hamiltonian for an electron travelling through a large-amplitude backward electromagnetic wave, an axial guide magnetic field and radiation field is formulated. Poincare surface-of-section plots show that this Hamiltonian is non-integrable, and leads to chaotic trajectories. Equilibrium conditions are derived in the limit where the radiation field approaches zero. Compared to conventional FEL, the total energy of the system at pondermotive resonance E(c) is large, while the electron's critical energy...
Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces
Barinov, Alexei; Toffoli, Hande; Fabris, Stefano; Gregoratti, Luca; Aballe, Lucia; Dudin, Pavel; Baroni, Stefano; Kiskinova, Maya (American Physical Society (APS), 2007-07-01)
The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximate to 700 K), the complex C 1s and In 3d(5/2) spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacan...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. E. Kilic and S. Alaei, “Structural properties of beta-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations,”
CURRENT APPLIED PHYSICS
, pp. 1352–1358, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65413.