Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surface morphological evolution on single crystal films by strong anisotropic drift diffusion under capillary and electromigration forces
Download
index.pdf
Date
2006-08-15
Author
Ogurtani, Tarik Omer
Celik, Aytac
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
161
views
0
downloads
Cite This
The morphological evolution of voids at unpassivated surfaces and the sidewalls of single crystal metallic films is investigated via computer simulations by using a mathematical model based on fundamental postulates of irreversible thermodynamics. The effect of drift-diffusion anisotropy on the development of surface morphological scenarios is explored under the action of electromigration (EM) and capillary forces, utilizing numerous combinations of the surface texture and the direction of the applied electric field. Analytical expressions for the interconnect catastrophic failure time due to the EM-induced transgranular wedge-shaped voids, the propagation velocity of surface solitary waves, and the incubation time of the regenerative oscillatory surface waves are deduced under the severe instability regimes, by inverse normalization procedures applied to the outputs of the extensive computer simulation experiments. (c) 2006 American Institute of Physics.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/65473
Journal
JOURNAL OF APPLIED PHYSICS
DOI
https://doi.org/10.1063/1.2234800
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Grain boundary grooving induced by the anisotropic surface drift diffusion driven by the capillary and electromigration forces: Simulations
Akyildiz, Oncu; Ogurtani, Tarik Omer (AIP Publishing, 2011-08-15)
The morphological evolution kinetics of a bicrystal thin film induced by anisotropic surface drift diffusion and driven by the applied electrostatic field is investigated via self consistent dynamical computer simulations. The physico-mathematical model, which is based upon the irreversible thermodynamic treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], provided us with auto-control on the otherwise free-motion of the triple junction at the intersec...
Morphological evolution of voids by surface drift diffusion driven by capillary, electromigration, and thermal-stress gradients induced by steady-state heat flow in passivated metallic thin films and flip chip solder joints. I. Theory
Ogurtani, Tarik Omer; Akyildiz, Oncu (AIP Publishing, 2008-07-15)
The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not...
Morphological evolution of voids by surface drift diffusion driven by the capillary, electromigration, and thermal-stress gradient induced by the steady state heat flow in passivated metallic thin films and flip-chip solder joints. II. Applications
Ogurtani, Tarik Omer; Akyildiz, Oncu (AIP Publishing, 2008-07-15)
The void growth and drift motion induced by the combined actions of the phase transformation (evaporation and condensation) and surface drift diffusion driven by the capillary and electromigration forces and thermal-stress gradients are investigated in passivated metallic thin films and flip-chip solder joints via computer simulation using the front-tracking method. As far as the device reliability is concerned, the most critical configuration for solder joint failure occurs even when thermal stresses are l...
Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces
Barinov, Alexei; Toffoli, Hande; Fabris, Stefano; Gregoratti, Luca; Aballe, Lucia; Dudin, Pavel; Baroni, Stefano; Kiskinova, Maya (American Physical Society (APS), 2007-07-01)
The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximate to 700 K), the complex C 1s and In 3d(5/2) spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacan...
Theoretical investigation of charge accumulation layer on the Bi-induced InAs(111)-(2 x 2) surface
Ozkaya, S.; Usanmaz, D.; ÇAKMAK, MELEK; Alkan, B.; Ellialtıoğlu, Süleyman Şinasi (AIP Publishing, 2014-04-28)
Based on pseudopotential method and density functional theory, we have investigated the stability, atomic geometry, and detailed electronic structures for Bi adsorbates on the InAs(111)-(2 x 2) surface with three different sites: (i) T-4 (Bi trimer centered on T-4 site), (ii) H-3 (Bi trimer centered on H-3 site), and (iii) T-4-H-3 (which is formed by trimers with opposite orientations: one centered on a T-4 site and the other on a H-3). Our total energy calculations suggest that adsorption on the T-4-H-3 si...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. O. Ogurtani and A. Celik, “Surface morphological evolution on single crystal films by strong anisotropic drift diffusion under capillary and electromigration forces,”
JOURNAL OF APPLIED PHYSICS
, pp. 0–0, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65473.