Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative
Date
2006-06-22
Author
Yilmaz, M. Deniz
Bozdemir, O. Altan
Akkaya, Engin U.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
0
downloads
Cite This
Click chemistry has been successfully applied in the synthesis of a bay region tetraboron-dipyrrin (BODIPY) appended perylenediimide (PDI). This light-harvesting molecule presents a large cross section for the absorption of light in the visible region. Excitation energy is efficiently channeled to the perylenediimide core. This novel antenna system is the first demonstration of the efficiency of energy transfer in a BODIPY-PDI bichromophoric system and appears to be highly promising for the design and synthesis of similar dendritic structures.
Subject Keywords
Physical and Theoretical Chemistry
,
Organic Chemistry
,
Biochemistry
URI
https://hdl.handle.net/11511/67225
Journal
ORGANIC LETTERS
DOI
https://doi.org/10.1021/ol061110z
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde
Demir, Ayhan Sıtkı; Sesenoglu, O; Dunkelmann, P; Muller, M (American Chemical Society (ACS), 2003-06-12)
Benzaldehyde lyase from the Pseudomonas fluorescens catalyzes the reaction of aromatic aldehydes with methoxy and dimethoxy acetaldehyde and furnishes (R)-2-hydroxy-3-methoxy-1-arylpropan-1-one and (R)-2-hydroxy-3,3-dimethoxy-1-arylpropan-1-one in high yields and enantiomeric excess via acyloin linkage. Aromatic aldehydes and benzoins are converted into enamine-carbanion-like intermediates prior to carboligation.
Synthesis of ferrocenyl quinolines
Zora, Metin (Elsevier BV, 2008-06-01)
A convenient one-pot synthesis of ferrocenyl-substituted quinolines via a molecular iodine-catalyzed reaction of ferrocenylimines with enolizable aldehydes is reported. First, nucleophilic addition of the in situ generated enol to ferrocenylimine produces beta-anilinopropionaldehyde, which then undergoes intramolecular Friedel-Crafts reaction to give dihydroquinoline derivative. Finally, subsequent dehydration and aerobic oxidation affords ferrocenyl quinolines.
Mechanistic Insights into the Reaction of N-Propargylated Pyrrole- and Indole-Carbaldehyde with Ammonia, Alkyl Amines, and Branched Amines: A Synthetic and Theoretical Investigation
Sari, Ozlem; Seybek, Ali Fatih; Kaya, Serap; Menges, Nurettin; ERDEM, SAFİYE; BALCI, METİN (Wiley, 2019-09-01)
The reaction of pyrrole- and indole-carbaldehydes having a propargyl group attached to the nitrogen atom with various amines was studied. The reaction with ammonia formed pyrrolo[1,2-a]pyrazine and pyrazino[1,2-a]indole while the reaction with alkylamines such as methyl, ethyl, hexyl, and benzylamines formed the corresponding pyrazinone derivatives. Unexpectedly, the reaction with allylamine and propargylamine formed pyrazine derivatives in which the allyl and propargyl groups were removed from the molecule...
Fam-Ti catalyzed enantioselective alkynylation of aldehydes
KOYUNCU, Hasan; Doğan, Özdemir (American Chemical Society (ACS), 2007-08-16)
Ferrocenyl-substituted aziridinylmethanol (Fam-1) has been used as a chiral catalyst with titanium for enantioselective alkynylation of aromatic, heteroaromatic, aliphatic, and alpha,beta-unsaturated aldehydes to give the corresponding propargylic alcohols in up to 96% yield and 96% ee. The ligand can be prepared easily and recycled.
Synthesis of ferrocenyl pyrazoles by the reaction of (2-formyl-1-chlorovinyl)ferrocene with hydrazines
Zora, Metin (Elsevier BV, 2007-10-15)
Synthesis of ferrocenyl-substituted pyrazoles via the reaction between (2-formyl-1-chlorovinyl)ferrocene and hydrazine derivatives is described. Depending upon the substitution pattern of hydrazine, the reaction affords 1-alkyl/aryl-5-ferrocenylpyrazoles and/or 1-alkyl/ aryl-3-ferrocenylpyrazoles. The reaction appears to be general for a variety of hydrazine derivatives.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. D. Yilmaz, O. A. Bozdemir, and E. U. Akkaya, “Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative,”
ORGANIC LETTERS
, pp. 2871–2873, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67225.