Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources

2020-04-01
Al-Ghussain, Loiy
Samu, Remember
Taylan, Onur
Fahrioglu, Murat
The hybridization of renewable energy systems (RES) and further integrating them with Energy Storage Systems (ESS) can help improve the RESs' reliability and reduce the mismatch between energy consumption and generation profiles. The main aim of this study is to suggest a sizing methodology for the RES components with various ESS scenarios in a microgrid through techno-economic feasibility analysis. Although the suggested methodology is flexible to include several RESs and ESSs, the methodology is demonstrated to compare the techno-economic performance of Wind and Photovoltaic (PV) energy systems under four different ESS scenarios; (i) no ESS, (ii) Pumped Hydro Storage (PHS), (iii) Hydrogen Fuel Cell (HFC), and (iv) hybrid ESS (PHS/HFC). The optimal RES configuration is determined by maximizing the RES fraction while equating the Cost of Electricity (COE) to the national utility tariff. However, in the event that there is no feasible system configuration that satisfies the mentioned criteria, the main objective becomes maximizing the RES fraction at the lowest attainable COE. This study outlines that the incorporation of PHS and HFC with the PV/Wind hybrid system increased the demand-supply fraction from 46.5%-89.4% and the RES fraction from 62.6%-91.8% with COE equals to 0.175 USD/kWh.
SUSTAINABLE CITIES AND SOCIETY

Suggestions

An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies
Al-Ghussain, Loiy; Taylan, Onur; Baker, Derek Keıth (Wiley, 2019-01-01)
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro-grid; (1) with pumped hydro storage (PHS) as a long-term ESS, (2) with batteries as a short-term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (F-RES) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the ...
Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data
Sadati, S. M. Sajed; Jahani, Elham; Taylan, Onur; Baker, Derek Keıth (2018-02-01)
Deploying renewable energy systems (RES) to supply electricity faces many challenges related to cost and the variability of the renewable resources. One possible solution to these challenges is to hybridize RES with conventional power systems and include energy storage units. In this study, the feasibility analysis of a grid-connected photovoltaic (PV)wind-battery hybrid system is presented as a microgrid for a university campus-scale community on a Mediterranean island. Models for PV and wind turbine syste...
Sizing methodology of a PV/wind hybrid system: Case study in cyprus
Al-Ghussain, Loiy; Taylan, Onur (Wiley, 2019-05-01)
This study aims to suggest a method for sizing of a photovoltaic (PV)/wind hybrid system based on maximizing the annual renewable energy system (RES) fraction with levelized cost of electricity (LCOE) being equal to the grid tariff. The novelty of this article is the idea of maximizing the energy security, energy localization, and environmental benefits from the hybrid system and at the same time ensures the economic feasibility of the system where Middle East Technical University Northern Cyprus Campus (ME...
Optimization of PERC fabrication based on loss analysis in an industrially relevant environment: First results from GUNAM photovoltaic line (GPVL)
ES, FIRAT; SEMİZ, EMEL; Orhan, Efe; Genc, Ezgi; Kokbudak, Gamze; Baytemir, Gulsen; Turan, Raşit (Elsevier BV, 2020-02-01)
Passivated emitter and rear cell (PERC) concept with an already developed roadmap for 24% efficiency will be leading the photovoltaics industry in the upcoming years. In a few industrial pilot lines, efficiencies above 22% have already been attained. Pilot lines have important roles in bridging lab scale proven concepts with the products which are ready for mass production. Therefore, GUNAM Photovoltaic Line which is specialized on PERC concepts has been established to overcome the barriers that hinder the ...
Feasibility analysis and proof of concept for thermoelectric energy harvesting in mobile computers
Denker, R.; Muhtaroglu, A. (AIP Publishing, 2013-03-01)
Thermoelectric (TE) energy harvesting in compact microelectronic systems necessitates detailed upfront analysis to ensure unacceptable performance degradation is avoided. TE integration into a notebook computer is empirically investigated in this work for energy harvesting. A detailed finite element model was constructed first for thermal simulations. The model outputs were then correlated with the thermal validation results of the selected system. In parallel, a commercial TE micro-module was empirically c...
Citation Formats
L. Al-Ghussain, R. Samu, O. Taylan, and M. Fahrioglu, “Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources,” SUSTAINABLE CITIES AND SOCIETY, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67379.