Hardware in the Loop Wind Turbine Emulator

Muntean, Nicolae
Tutelea, Lucian
Petrila, Diana
Pelan, Ovidiu
The paper presents a "hardware in the loop" emulator for a wind turbine system, used to tune and test in the laboratory the generator and the associate power electronics and control. The emulator includes: a Alatlab/Simulink model of the wind turbine, an a.c. drive with direct torque control (the wind turbine equivalent) coupled with the real generator and the corresponding load. Digital simulations compared with experimental results arc presented to validate the wind turbine emulator.
International Aegean Conference on Electrical Machines and Power Electronics / Electromotion Joint Conference


Sliding Mode Control Of Permanent Magnet Synchronous Motor Fed By Wind Turbine Generator Taking Saturation Effect Into Account
Benchabane, F.; Titaouine, A.; Bennis, O.; Guettaf, A.; Yahia, K.; Taibi, D. (2011-09-10)
In this paper, we present the voltage build up process and the terminal voltage control of an isolated wind powered induction generator driven by a variable speed wind turbine using rotor flux oriented vector control. A description of the studied system is provided, and a simulation study is presented. The model used for the autonomous induction generator is a diphase one obtained by application of the Park transform. Theis model permits, when adopting some simplifying hypotheses, taking account the saturat...
Improved Second Generation Electromagnetic MEMS Energy Scavenger
Turkyilmaz, Serol; Muhtaroglu, Ali; Külah, Haluk (2011-12-02)
This paper presents an optimized second generation electromagnetic (EM) MEMS power generator which can harvest energy from low frequency external vibrations. In the second generation scavenger, power is generated through planar electromagnetic induction using a magnet on the low frequency actuation plane, and coils on the high frequency resonance plane. It is demonstrated in this work through modeling and simulation that the generated power level is maximized by geometric optimization of the high frequency ...
A wideband electromagnetic micro power generator for wireless microsystems
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2007-06-14)
This paper presents a wideband electromagnetic (EM) vibration-to-electrical power generator which can efficiently scavenge energy and generate steady power over a predetermined frequency range. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating cantilever beams. The reported generator covers a wide band of external vibration frequency by implementing a number of serially connected cantilevers in different lengths. The device generates 0.5 mu W continuous p...
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
A micro power generator with planar coils on parylene cantilevers
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (2008-06-25)
In this paper an electromagnetic vibration based micro power generator is presented. The proposed generator is composed of parylene cantilevers on which planar coils are fabricated. The system uses external vibrations to generate power by virtue of the relative motion between the cantilevers and a magnet. The parameters of the micro generator have been optimized for maximum output and it has been fabricated in micro scale. Initials tests show that 8.75 mV could be obtained from the proposed generator at a v...
Citation Formats
N. Muntean, L. Tutelea, D. Petrila, and O. Pelan, “Hardware in the Loop Wind Turbine Emulator,” Istanbul, TURKEY, 2011, p. 53, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67794.