Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering
Date
2019-07-01
Author
Dalgıç, Ali Deniz
Karataş, Ayten
Tezcaner, Ayşen
Keskin, Dilek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
262
views
0
downloads
Cite This
Tissue engineering can benefit from wide variety of materials produced by microorganisms. Natural origin materials often possess good biocompatibility, biodegradability with sustainable production by microorganisms. A phytoplankton, diatom, produces an amorphous silica shell that can be obtained by a cost efficient production process. Diatom shells (DS) are promising for bone tissue engineering since silicon enhances bone regeneration. Biocompatible and biodegradable biopolymers with microorganism origin can be combined with DS to produce tissue engineering constructs. In this study, a novel multifunctional 3D fibrous scaffold for bone tissue engineering was produced by co-electrospinning system; antibiotic loaded poly(hydroxybutyrate-co-hydroxyvalerate)/poly(epsilon-caprolactone) (PHBV/PCL) fibers and DS incorporated pullulan (PUL) fibers. Controlled release of cefuroxime axetil (CA) from DS and scaffolds were investigated upon loading CA into DS or PHBV/PCL fibers. Purified DS were characterized with ESCA, SEM, and EDX analyses while scaffolds were evaluated in terms of morphology, porosity, degradation, calcium deposition, water retention and mechanical properties. In vitro studies showed that scaffolds bearing DS have improved human osteosarcoma (Saos-2) cell viability. Developed co-electrospun scaffold showed higher osteocompatibility with better cell spreading and cell distribution. Results showed that DS loaded, co-electrospun scaffold having both hydrophobic and hydrophilic characteristics can be a promising biomaterial for bone tissue engineering.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/40930
Journal
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
DOI
https://doi.org/10.1016/j.msec.2019.03.046
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing
Yesil, Sertan; Winkelrnann, Charles; Bayram, Göknur; La Saponara, Valeria (Elsevier BV, 2010-10-25)
This paper documents the mechanical and electrical performance of self-sensing conductive polymer composites prepared with a low-cost technique and small hardware, able to considerably improve the dispersion and the surface adhesion of multi-walled carbon nanotubes (CNTs) in epoxy resin with respect to amine-modified CNTs and as-received CNTs. Surface treatment of the CNTs is performed using hexamethylene diamine, or a mix of sulfuric and nitric acid, and one of two surfactants (for the diamine treatment on...
Titanium-magnesium based composites: Mechanical properties and in-vitro corrosion response in Ringer's solution
ESEN, ZİYA; Dikici, Burak; Duygulu, Ozgur; Dericioğlu, Arcan Fehmi (Elsevier BV, 2013-06-20)
Ti-Mg composite rods exhibiting both bioinert and biodegradable characteristics have been manufactured by hot rotary swaging from elemental powders of titanium and magnesium. As a result of processing, spherical magnesium powders elongated in the direction of deformation and the dendritic structure in starting magnesium powders transformed into highly equiaxed grains. Magnesium particles in the outer layer of the composites were decorated by thin layer of MgO while the interior parts were free from oxides. ...
Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Efficient fabrication of ultrafine-grained 316L stainless steel surfaces for orthopaedic applications
Tufan, Yiğithan; Efe, Mert; Ercan, Batur (Informa UK Limited, 2019-10-13)
Commonly used severe plastic deformation (SPD) methods are suitable for fabrication of bulk nano and ultrafine-grained metals. Drawbacks of these methods include durability of dies, geometrical restrictions and reduced ductility of the products. In this study, two common machining techniques used in manufacturing of orthopaedic components, turning and milling, were applied on 316L stainless steel as surface SPD to refine the surface microstructures of the workpiece. Machining with optimised parameters resul...
Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models
Martin, Bryn A.; Kutluay, Umit; Yazıcıoğlu, Yiğit (ASTM International, 2013-09-01)
Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were pr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. D. Dalgıç, A. Karataş, A. Tezcaner, and D. Keskin, “Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering,”
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
, pp. 735–746, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40930.