Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influence of STRO-1 selection on osteogenic potential of human tooth germ derived mesenchymal stem cells
Date
2017-10-01
Author
Ercal, Pinar
Pekozer, Gorke G.
Gumru, Osman Z.
KÖSE, GAMZE
Ramazanoglu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
335
views
0
downloads
Cite This
Mesenchymal stem cells derived from the human tooth germ (hTGSCs) are a heterogeneous cell population that can differentiate into osteogenic, neurogenic, and adipogenic lineages. The aim of this study was to compare the osteogenic differentiation capacity of STRO-1 positive (STRO-1 +) hTGSCs and unsorted heterogeneous hTGSCs and to establish if STRO-1 + cells are more committed to osteogenic differentiation. HTGSCs were isolated from impacted third molar tooth germ tissues of adolescents, and a subpopulation of STRO-1 + hTGSCs was obtained by fluorescence-activated cell sorting. STRO-1 +, STRO-1 negative (STRO-1), and unsorted cells were cultured in osteogenic and standard culture media to compare their capacity to differentiate towards osteoblastic lineage. Cells were tested for proliferation rates, alkaline phosphatase activity, and amounts of accumulated calcium. Gene expression levels of the RUNX2, osteocalcin, and osteonectin genes were analyzed with real time PCR. Mineralization and osteogenic protein expression were examined by using von Kossa staining and confocal microscopy. Our results indicated that osteogenically induced cell populations showed greater mineralization capacity than non-induced cells. However, expression levels of early and late osteogenic markers were not significantly different between STRO-1 + and unsorted cells. In conclusion, the selection by STRO-1 expression does not yield cells with osteogenic capacity higher than that of the heterogeneous hTGSC population. Cell sorting using osteogenic markers other than STRO-1 might be beneficial in obtaining a more sensitive osteogenic sub-population from unsorted heterogenous hTGSCs.
Subject Keywords
Cell Biology
,
Otorhinolaryngology
,
General Dentistry
,
General Medicine
URI
https://hdl.handle.net/11511/68179
Journal
ARCHIVES OF ORAL BIOLOGY
DOI
https://doi.org/10.1016/j.archoralbio.2017.06.028
Collections
Biomaterials and Tissue Engineering Application and Research Center (BİOMATEN), Article
Suggestions
OpenMETU
Core
Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors.
Coban, C; Ishii, KJ; Gürsel, Mayda; Klinman, DM; Kumar, N (Wiley, 2005-09-01)
DNA vaccines, in general, have been found to be poorly immunogenic in nonhuman primates and humans as compared with mice. As the immunogenicity of DNA plasmids relies, to a large extent, on the presence of CpG motifs as built in adjuvants, we addressed the issue of poor immunogenicity by inserting recently identified CpG oligonucleotides (ODN) optimal for human (K-type or D-type CpG ODN) into the backbone of plasmid VR1020. We found that plasmid DNA containing K-type CpG motifs or D-type CpG motifs signific...
The effect of diabetes on rat skeletal muscle tissues at molecular level
Bozkurt, Özlem; Severcan, Feride; Department of Biology (2006)
In the present study Fourier Transform Infrared Spectroscopy was used to examine the effects of streptozotocin-induced diabetes mellitus on the structural components of slow- and fast-twitch rat skeletal muscles, at molecular level. Diabetes mellitus is a chronic disorder of carbohydrate, fat and protein metabolism, which is characterized by hyperglycemia caused by a defective or deficient insulin secretory response. The effect of diabetes is seen on a variety of tissues leading to important secondary compl...
Influence of micropatterns on human mesenchymal stem cell fate /
Hastürk, Onur; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2016)
Mesenchymal stem cells (MSCs) are promising cell sources for tissue engineering applications as they can differentiate into a variety of adult cells types including osteoblasts. In vivo microenvironment of stem cells is known to provide both biochemical signals and micro- and nanoscale physical cues that influence the behavior and fate of stem cells. The use of soluble chemical factors is the most common strategy to guide the commitment of MSCs to specific lineages, but it is a cause of concern such as unsa...
Characterization and identification of human mesenchymal stem cells at molecular level
Aksoy, Ceren; Severcan, Feride; Çetinkaya, Duygu Uçkan; Department of Biotechnology (2012)
Bone marrow mesenchymal stem cells (BM-MSCs) are pluripotent cells that can differentiate into a variety of non-hematopoietic tissues. They also maintain healthy heamatopoiesis by providing supportive cellular microenvironment into BM. In this thesis, MSCs were characterized in terms of their morphological, immunophenotypical and differentiation properties. Then, they were examined by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy together with hierarchical clustering, and FT...
Effect of double growth factor release on cartilage tissue engineering
Ertan, Ayse Burcu; Yilgor, Pinar; Bayyurt, Banu; Calikoglu, Ayse Ceren; Kaspar, Cigdem; Kök, Fatma Neşe; KÖSE, GAMZE; Hasırcı, Vasıf Nejat (2013-02-01)
The effects of double release of insulin-like growth factor I (IGF-I) and growth factor 1 (TGF1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF1, respectively. On tissue culture polystyrene (TCPS), TGF-1 released from PNIPAM nanoparticles was found to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Ercal, G. G. Pekozer, O. Z. Gumru, G. KÖSE, and M. Ramazanoglu, “Influence of STRO-1 selection on osteogenic potential of human tooth germ derived mesenchymal stem cells,”
ARCHIVES OF ORAL BIOLOGY
, pp. 293–301, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68179.