Quantum Transport Mode in Graphene Nanoribbon Based Transistor

2017-09-01
Hedayat, Sayed Norollah
Ahmadi, Mohammad Taghi
Sedghi, Hassan
Goudarzi, Hadi
Moradi, Shahram
Graphene has incredible carrier transport property with high application opportunity at single molecule level, which composes it as promising materials on nano electronic application. In order to develop the new device such as graphene nanoribbon transistor, Carbon Nanotube Field Effect Transistor (CNTFET) and nanowire based devices, it is essential to investigate the quantum limit in low dimensional systems. In this paper transmission coefficient of the schottky structure in the graphene based transistor is modeled additionally its quantum properties due to the structural parameters are analyzed. Also one dimensional quantum current in the presence of the wave vector approximation for monolayer graphene nanoribbon (MGNR) is presented.
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS

Suggestions

Electrical response of electron selective atomic layer deposited TiO2-x heterocontacts on crystalline silicon substrates
Ahiboz, Doguscan; Nasser, Hisham; Aygun, Ezgi; Bek, Alpan; Turan, Raşit (IOP Publishing, 2018-04-01)
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2-x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2-x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, p...
Stability analysis of graphene nanoribbons by molecular dynamics simulations
Dugan, N.; Erkoç, Şakir (Wiley, 2008-04-01)
In this work, stability of graphene nanoribbons are investigated using molecular dynamics. Simulations include heating armchair and zigzag-edged nanoribbons of widths varying between one and nine hexagonal rings until the bonds between carbon atoms start to break. Breaking temperatures and binding energies per atom for different widths are presented for both armchair and zigzag-edged cases. A nontrivial relation between stability and width is observed and discussed.
Lattice-matched AlInAs-InGaAs mid-wavelength infrared QWIPs: characteristics and focal plane array performance
Kaldirim, M.; Arslan, Y.; Eker, S. U.; Beşikci, Cengiz (IOP Publishing, 2008-08-01)
The AlInAs/InGaAs material system is promising for mid-wavelength infrared (MWIR) and multi-band quantum well infrared photodetectors (QWIPs) as a lattice-matched alternative to the strained AlGaAs/InGaAs system. In this paper, we report a large format (640 x 512) AlInAs/InGaAs QWIP focal plane array (FPA) with 4.9 mu m cut-off wavelength and assess the performance of this material system for MWIR QWIP applications at both pixel and large format FPA level. We also experimentally demonstrate that the cut-off...
Atomic and electronic structure of rigid carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (Wiley, 2012-09-01)
We have reported, from ab initio calculations, on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated armchair graphene nanoribbons (AGNR) and zig-zag graphene nanoribbons (ZGNR). Several lengths (N?=?29 atoms) and forms of the chains have been considered. All models are found to be metallic in nature, with chemical bonding more like $\cdots {\rm C}- {\rm C}\equiv {\rm C}- {\rm C}\equiv {\rm C}\cdots $ (as in polyyne) for odd-numbered chain...
Custom integrated circuit design for ultrasonic therapeutic CMUT array
Maadi, Mohammad; Bayram, Barış (Springer Science and Business Media LLC, 2015-04-01)
This paper presents the design of a highly flexible and programmable transmit beam-former ASIC using a high voltage (HV) 0.35 mu m CMOS technology to be flip-chip bonded to a 4 x 4 CMUT array for ultrasound therapeutic applications. However, proposed IC can be used as a transmitter circuitry in color Doppler 3D imaging applications. In our proposed chip, each CMUT element is provided by an 8-bit shift register, an 8-bit comparator, a one-shot circuit with adjustable pulse width, a programmable pulse train g...
Citation Formats
S. N. Hedayat, M. T. Ahmadi, H. Sedghi, H. Goudarzi, and S. Moradi, “Quantum Transport Mode in Graphene Nanoribbon Based Transistor,” JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, pp. 886–890, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68198.