Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Metamaterial absorber-based multisensor applications using a meander-line resonator
Date
2017-08-01
Author
AKGÖL, OĞUZHAN
ALTINTAŞ, OLCAY
Dalkilinc, Elif Eda
ÜNAL, EMİN
KARAASLAN, MUHARREM
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
270
views
0
downloads
Cite This
A metamaterial (MTM) absorber-based multifunctional sensor is numerically and experimentally realized using meander-line resonators. The proposed sensor device can be used to measure pressure, density, and humidity with perfect signal absorption characteristics at the frequency range of X band. The structure consists of a sensor layer sandwiched between two dielectric slabs. The sensor layer is used to detect unknown environmental parameters with respect to the electromagnetic responses of the material under test. A meander-line type resonator is chosen to achieve highly efficient electrical response at the related frequency range. It is well known that an MTM can be efficiently used for sensing purposes in a microwave regime if the absorption characteristic is approximately linear over the certain frequency band. The proposed model is numerically analyzed for pressure, density, and humidity sensing applications. In addition, the experimental study is carried out to prove the sensing ability of the suggested structure in the case of the density sensing application. The meander-line-based MTM absorber can be used in many application areas, such as the agriculture, medical, and defense industries. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Subject Keywords
Metamaterials
,
Absorbers
,
Sensors
,
Meander line
URI
https://hdl.handle.net/11511/68268
Journal
OPTICAL ENGINEERING
DOI
https://doi.org/10.1117/1.oe.56.8.087104
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Circumferential Traveling Wave Slot Array on Cylindrical Substrate Integrated Waveguide (CSIW)
Bayraktar, Omer; Aydın Çivi, Hatice Özlem (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
Traveling wave slot array on cylindrical substrate integrated waveguide (CSIW) is designed, fabricated and measured at K-band. CSIW is formed by wrapping the substrate integrated waveguide (SIW) around the cylinder in the circumferential direction. 16 element longitudinal slot array on the broad wall of single CSIW is designed by the Elliot's design procedure. The spacings between the slot elements are determined to reduce the half power beam width (HPBW) and to obtain good matching at 25 GHz. A 4 x 16 slot...
Metamaterial absorber-based sensor embedded into X-band waveguide
SABAH, CUMALİ; TURKMEN-KUCUKSARİ, OZNUR; Sayan, Gönül (Institution of Engineering and Technology (IET), 2014-07-17)
A novel metamaterial sensor, integrated with an X-band waveguide, is proposed for high-resolution measurements of variations in the dielectric constant and/or the thickness of a superstrate layer that covers a pair of absorber unit cells. Variations in superstrate parameters are potentially caused by physical, chemical or biological factors, and can be detected by measuring the corresponding shifts in the resonance frequency of the metamaterial sensor. It is estimated by simulation results that resolution l...
Numerical analysis, design and two port equivalent circuit models for split ring resonator arrays
Yaşar Örten, Pınar; Sayan, Gönül; Department of Electrical and Electronics Engineering (2010)
Split ring resonator (SRR) is a metamaterial structure which displays negative permeability values over a relatively small bandwidth around its magnetic resonance frequency. Unit SRR cells and arrays have been used in various novel applications including the design of miniaturized microwave devices and antennas. When the SRR arrays are combined with the arrays of conducting wires, left handed materials can be constructed with the unusual property of having negative valued effective refractive indices. In th...
Multi-band polarization independent cylindrical metamaterial absorber and sensor application
Dincer, Furkan; KARAASLAN, MUHARREM; Colak, Sule; TETİK, ERKAN; AKGÖL, OĞUZHAN; ALTINTAŞ, OLCAY; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2016-03-30)
A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, re...
Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors
Ozbey, Burak; ERTÜRK, VAKUR BEHÇET; Kurç, Özgür; ALTINTAŞ, AYHAN; DEMİR, Hilmi Volkan (2016-11-01)
In this paper, simultaneous multi-point wireless sensing is proposed and demonstrated via multiple sensors in nested split-ring resonator (NSRR) geometry coupled to a single illuminator antenna. In this passive multi-point sensing system, each probe in the sensor array is assigned a non-overlapping spectral interval for frequency shift in response to local mechanical loading around a unique operating resonance frequency in the band of the antenna. Here, it is shown that the antenna is capable of capturing t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. AKGÖL, O. ALTINTAŞ, E. E. Dalkilinc, E. ÜNAL, M. KARAASLAN, and C. Sabah, “Metamaterial absorber-based multisensor applications using a meander-line resonator,”
OPTICAL ENGINEERING
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68268.