Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Turning up the heat: warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory
Date
2020-10-01
Author
He, Hu
Li, Qisheng
Li, Jing
Han, Yanqing
Cao, Yu
Liu, Wei
Yu, Jinlei
Li, Kuanyi
Liu, Zhengwen
Jeppesen, Erik
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
64
views
0
downloads
Understanding how biological communities respond to climate change is a major challenge in ecology. The response of ectotherms to changes in temperature depends not only on their species-specific thermal tolerances but also on temperature-mediated interactions across different trophic levels. Warming is predicted to reinforce trophic cascades in linear aquatic food chains, but little is known about how warming might affect the lower trophic levels of food webs involving extensive fish omnivory, a common scenario in subtropical and tropical waterbodies. In this study, a mesocosm warming experiment was conducted involving a pelagic food chain (fish-zooplankton-phytoplankton) topped by the omnivorous bighead carp [Aristichthys nobilis(Richardson)]. We found that temperature elevation significantly enhanced the growth of fish and suppressed zooplankton, including both metazooplankton and ciliates, while abundances of phytoplankton, despite disruption of temporal dynamics, did not increase correspondingly-likely due to fish predation. Our results suggest that trophic cascades are less unlikely to be reinforced by warming in food chains involving significant omnivory. Moreover, we found that warming advanced the spring abundance peak of phytoplankton abundance and that of the parthenogenetic rotiferBrachionus quadridentatus; whereas, it had no effect on the only sexually reproducing copepod,Mesocyclops leuckarti, presumably due to its prolonged life history. Our study also confirmed that warming may lead to a phenological mismatch between some predators and their prey because of the distinct life histories among taxa, with potentially severe consequences for resource flow in the food chain, at least in the short term.
Subject Keywords
Warming
,
Plankton
,
Omnivory
,
Food chain
,
Phenology
,
Mismatch
URI
https://hdl.handle.net/11511/68534
Journal
OECOLOGIA
DOI
https://doi.org/10.1007/s00442-020-04758-x
Collections
Department of Biology, Article