Gravitational Waves and 2.5 PN Gravitational Wave Memory

Download
2020-9
Uçanok, Onur
Since the discovery of general relativity, the Einstein field equations have explainedmany phenomenon (e.g. precession of orbits) and predicted others (e.g. gravitational lensing, gravitational time dilation and black holes). Among its many predictions,the wave-like nature of the linearized theory has garnered a lot of attention due to the possiblity of gravitational wave propagation; their effects, their observability andthe complicated nature of gravitational radiation. Many scientists (that can be found in references) have worked on ways to approach the non-linear limit of this theorythrough methods such as post-Newtonian (PN) expansion and post-Monkowskian expansion. From these methods, one can find that for weakly self-gravitating object,we can approximate the production of waves up to corrections of O(v/c)n. Thesecorrections also predicts observable gravitational corrections in the far zone called“memory effect”. This effect corresponds to a permanent change in the metric after the wave has long passed the observer. In this thesis, I will go through the processof deriving these intriguing predictions which are soon to be put to the test by freefall interferometers (e.g. LISA and DECIGO) or matter-wave interferometers (e.g.MIGA).

Suggestions

Energy in Reboucas-Tiomno-Korotkii-Obukhov and Godel-type space-times in Bergmann-Thomson's formulations
Aydogdu, O; Salti, M; Korunur, M (2005-12-01)
We calculate the total energy (the matter plus fields) of the universe considering Bergmann-Thomson's energy-momentum formulation in both Einstein's theory of general relativity and tele-parallel gravity on two different space-times; namely Reboucas-Tiomno-Korotkii-Obukhov and the Godel-type metrics. We also compute some kinematical quantities for these space-times and find that these space-times have shear-free expansion and non-vanishing four-acceleration and vorticity. Different approximations of the Ber...
Neutrino oscillations induced by spacetime torsion
Adak, M; Dereli, T; Ryder, LH (IOP Publishing, 2001-04-21)
The gravitational neutrino oscillation problem is studied by considering the Dirac Hamiltonian in a Riemann-Cartan spacetime and calculating the dynamical phase. Torsion contributions which depend on the spin direction of the mass eigenstates are found. These effects are of the order of Planck scales.
Entangled Harmonic Oscillators and Space-Time Entanglement
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E. (MDPI AG, 2016-6-28)
The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent p...
Gravitational waves and gravitational memory
Korkmaz, Ali; Tekin, Bayram; Department of Physics (2018)
We study the gravitational waves produced by compact binary systems in the linear regime of massless general relativity and calculate the gravitational memory produced by these waves on a detector.
Spectra, vacua, and the unitarity of Lovelock gravity in D-dimensional AdS spacetimes
Sisman, Tahsin Cagri; Gullu, Ibrahim; Tekin, Bayram (2012-08-24)
We explicitly confirm the expectation that generic Lovelock gravity in D dimensions has a unitary massless spin-2 excitation around any one of its constant curvature vacua just like the cosmological Einstein gravity. The propagator of the theory reduces to that of Einstein's gravity, but scattering amplitudes must be computed with an effective Newton's constant which we provide. Tree-level unitarity imposes a single constraint on the parameters of the theory yielding a wide range of unitary region. As an ex...
Citation Formats
O. Uçanok, “Gravitational Waves and 2.5 PN Gravitational Wave Memory,” M.S. - Master of Science, Middle East Technical University, 2020.