Energy-efficient and fault-tolerant drone-BS placement in heterogeneous wireless sensor networks

2020-11-01
Deniz, Fatih
Bagci, Hakki
KÖRPEOĞLU, İBRAHİM
Yazıcı, Adnan
This paper introduces a distributed and energy-aware algorithm, called Minimum Drone Placement (MDP) algorithm, to determine the minimum number of base stations mounted on resource-rich Unmanned Aerial Vehicles (UAV-BS), commonly referred to as drone-BS, and their possible locations to provide fault tolerance with high network connectivity in heterogeneous wireless sensor networks. This heterogeneous model consists of resource-rich UAV-BSs, acting as gateways of data, as well as ordinary sensor nodes that are supposed to be connected to the UAV-BSs via multi-hop paths. Previous efforts on fault tolerance in heterogeneous wireless sensor networks attempt to determine transmission radii of the sensor nodes based on the already deployed base station positions. They assume that the base stations are stationary and arbitrarily deployed regardless of the position of the sensor nodes. Our proposed MDP algorithm takes into account the desired degree of fault tolerance and the position of ordinary sensor nodes to determine the optimal number of UAV-BSs and their locations. The MDP algorithm consists of two steps. In the first step, each sensor node chooses low-cost pairwise disjoint paths to a subset of candidate UAV-BSs, using an optimization based on the well-known set-packing problem. In the last step, depending on the desired degree of fault tolerance, MDP chooses a subset of these UAV-BS candidates using a novel optimization based on the well-known set-cover problem. Through extensive simulations, we demonstrate that the MDP achieves up to 40% improvement in UAV-connected lifetimes compared to a random and uniform distribution of UAV-BSs.
WIRELESS NETWORKS

Suggestions

Massive MIMO Channel Estimation With an Untrained Deep Neural Network
Balevi, Eren; Doshi, Akash; Andrews, Jeffrey G. (2020-03-01)
This paper proposes a deep learning-based channel estimation method for multi-cell interference-limited massive MIMO systems, in which base stations equipped with a large number of antennas serve multiple single-antenna users. The proposed estimator employs a specially designed deep neural network (DNN) based on the deep image prior (DIP) network to first denoise the received signal, followed by conventional least-squares (LS) estimation. We analytically prove that our LS-type deep channel estimator can app...
Energy-efficient real-time coordination and routing framework for wireless sensor and actor networks
Shah, Ghalib Asadullah; Bozyiğit, Müslim; Department of Computer Engineering (2007)
In Wireless Sensor Actor Networks (WSANs), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomenon. The presence of actors in this configuration can not be benefited from, unless they are able to execute actions at right place and right time in the event region. The right place can be related to the accurate position of the sensor nodes. While, the right time is related to delivering the packets directly to the appropriate actors within the event specific response ti...
Broadband solutions of potential integral equations with NSPWMLFMA
Khalichi, Bahram; Ergül, Özgür Salih; Ertürk, Vakur B. (Institute of Electrical and Electronics Engineers (IEEE), 2019-06)
In this communication, a mixed-form multilevel fast multipole algorithm (MLFMA) is combined with the recently introduced potential integral equations (PIEs), also called as the A-phi system, to obtain an efficient and accurate broadband solver that can be used for the solution of electromagnetic scattering from perfectly conducting surfaces over a wide frequency range including low frequencies. The mixed-form MLFMA uses the nondirective stable planewave MLFMA (NSPWMLFMA) at low frequencies and the conventio...
Real-time coordination and routing in wireless sensor and actor networks
Shah, Ghalib A.; Bozyigit, Muslim; Akan, Ozgur B.; Baykal, Buyurman (2006-01-01)
In Wireless Sensor Actor Networks (WSAN), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomena in the field. To ensure efficient and accurate operations of WSAN, new communication protocols are imperative to provide sensoractor coordination in order to achieve energy-efficient and reliable communication. Moreover, the protocols must honor the application-specific real-time delay bounds for the effectiveness of the actors in WSAN.
Cluster-based coordination and routing framework for wireless sensor and actor networks
Shah, Ghalib A.; Bozyigit, Muslim; Hussain, Faisal B. (2011-08-01)
In Wireless Sensor Actor Networks (WSAN), sensor nodes perform the sensing task and actor nodes take action based on the sensed phenomena. Generally, the network is configured to observe multiple events and to react upon each individual event accordingly. Time delay, energy efficiency and reliability are three important aspects of WSAN that require special attention. To ensure efficient and reliable operations of such heterogeneous WSAN, new communication protocols are imperative.
Citation Formats
F. Deniz, H. Bagci, İ. KÖRPEOĞLU, and A. Yazıcı, “Energy-efficient and fault-tolerant drone-BS placement in heterogeneous wireless sensor networks,” WIRELESS NETWORKS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69452.