Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Real-Time Attitude-Independent Magnetometer Bias Estimation for Spinning Spacecraft
Date
2018-01-01
Author
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
45
views
0
downloads
Cite This
Subject Keywords
Control and Systems Engineering
,
Space and Planetary Science
,
Electrical and Electronic Engineering
,
Applied Mathematics
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/69730
Journal
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
DOI
https://doi.org/10.2514/1.g002706
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Simulated annealing for missile optimization: Developing method and formulation techniques
Tekinalp, Ozan (American Institute of Aeronautics and Astronautics (AIAA), 2004-07-01)
Hide-and-seek is a continuous simulated annealing algorithm that uses an adaptive cooling schedule. A number of improvements are proposed for the global optimum estimation required for the cooling schedule. To handle equality constraints, two approaches are examined: the rejection method and augmentation of constraints to cost using penalty coefficients. It is demonstrated that a faster convergence is possible if, in the penalty coefficients approach, equality constraints are replaced with tight inequality ...
Impact Time and Angle Control Against Moving Targets with Look Angle Shaping
Tekin, Raziye; Erer, Koray S. (American Institute of Aeronautics and Astronautics (AIAA), 2020-05-01)
Nonlinear time-varying dynamic analysis of a spiral bevel geared system
Yavuz, Siar Deniz; Sarıbay, Zihni Burcay; Ciğeroğlu, Ender (Springer Science and Business Media LLC, 2018-06-01)
In this paper, a nonlinear time-varying dynamic model of a drivetrain composed of a spiral bevel gear pair, shafts and bearings is developed. Gear shafts are modeled by utilizing Timoshenko beam finite elements, and the mesh model of a spiral bevel gear pair is used to couple them. The dynamic model includes the flexibilities of shaft bearings as well. Gear backlash and time variation of mesh stiffness are incorporated into the dynamic model. Clearance nonlinearity of bearings is assumed to be negligible, w...
High-alpha flight maneuverability enhancement of a fighter aircraft using thrust-vectoring control
Atesoglu, Oezguer; Oezgoeren, M. Kemal (American Institute of Aeronautics and Astronautics (AIAA), 2007-09-01)
This study focuses on high-alpha flight maneuverability enhancement of a fighter-bomber aircraft for air combat superiority using thrust-vectoring control. Two basic air superiority maneuvers are studied as test cases, which are the Cobra maneuver with longitudinal motion and the Herbst maneuver with both longitudinal and lateral motions. The necessary mathematical models are built to describe the nonlinear 6-degree-of-freedom flight dynamics, the nonlinear aerodynamics, the engine, and the thrust-vectoring...
Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping
Saranlı, Uluç; Ankaralı, Mustafa Mert (Springer Science and Business Media LLC, 2010-12-01)
This paper introduces an accurate yet analytically simple approximation to the stance dynamics of the Spring-Loaded Inverted Pendulum (SLIP) model in the presence of non-negligible damping and non-symmetric stance trajectories. Since the SLIP model has long been established as an accurate descriptive model for running behaviors, its careful analysis is instrumental in the design of successful locomotion controllers. Unfortunately, none of the existing analytic methods in the literature explicitly take dampi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken, “Real-Time Attitude-Independent Magnetometer Bias Estimation for Spinning Spacecraft,”
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
, pp. 276–279, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69730.