Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simultaneous adaptation of the process and measurement noise covariances for the UKF applied to nanosatellite attitude estimation
Date
2014-01-01
Author
Söken, Halil Ersin
Sakai, Shin-Ichiro
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
164
views
0
downloads
Cite This
© IFAC.A common technique for improving the estimation performance of the Kalman filter and making the filter robust against any kind of faults is to adapt its process and measurement noise covariance matrices. Although there are numerous approaches for the adaptation such as full estimation or scaling, simultaneous adaptation of these two matrices is an ongoing discussion. In this paper, firstly, two common problems for the attitude estimation of a nanosatellite are solved by adapting the process and noise covariance matrices. Then these two adaptation methods are integrated with an easy to apply scheme and the matrices are simultaneously adapted. The newly proposed filtering algorithm, which is named Robust Adaptive Unscented Kalman Filter, considerably increases the estimation performance and is fault tolerant against the sensor malfunctions.
URI
https://hdl.handle.net/11511/69763
DOI
https://doi.org/10.3182/20140824-6-za-1003.00773
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2019-11-01)
In this paper, a method based on the multiple synchronous reference frame analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and all interharmonic...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2017-10-05)
In this paper, a method based on the multiple synchronous reference frame (MSRF) analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace (AC EAF) installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and a...
Adaptive Tuning of the Unscented Kalman Filter for Satellite Attitude Estimation
Söken, Halil Ersin (American Society of Civil Engineers (ASCE), 2015-05-01)
Determining the process noise covariance of the unscented Kalman filter (UKF) is a difficult procedure. The analytical approximation method gives satisfactory results in certain cases, but it fails when generalized for the estimation of the extended states, such as the case that sensor biases or scale factors are included in the state vector. The main aim of this research is to find an appropriate tuning algorithm for the process noise covariance of the UKF when the magnetometer biases are estimated, as wel...
Robust Attitude Estimation Using IMU-Only Measurements
Candan, Batu; Söken, Halil Ersin (2021-01-01)
© 1963-2012 IEEE.This article proposes two novel covariance-tuning methods to form a robust Kalman filter (RKF) algorithm for attitude (i.e., roll and pitch) estimation using the measurements of only an inertial measurement unit (IMU). KF-based and complementary filtering (CF)-based approaches are the two common methods for solving the attitude estimation problem. Efficiency and optimality of the KF-based attitude filters are correlated with appropriate tuning of the covariance matrices. Manual tuning proce...
Joint spatial and temporal channel-shortening techniques for frequency selective fading MIMO channels
Toker, Canan; Chambers, JA; Baykal, Buyurman (2005-02-01)
It is well understood that the maximum likelihood estimator is a powerful equalisation technique for frequency selective fading channels, and in particular for MIMO systems. The complexity of this estimator, however, grows exponentially with the number of users and multipath taps, hence limiting the use of this algorithm in MIMO systems. In the paper, the authors propose a joint spatial and temporal channel-shortening filter as a pre-processor to reduce significantly the complexity of a maximum likelihood e...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken and S.-I. Sakai, “Simultaneous adaptation of the process and measurement noise covariances for the UKF applied to nanosatellite attitude estimation,” 2014, vol. 19, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69763.