Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Physical Realization and Reflection Phase Characteristics of a Flexible High Impedance Surface
Date
2011-01-01
Author
Durgun, Ahmet Cemal
Birtcher, Craig R.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
This paper presents the fabrication and reflection phase measurements of a flexible high impedance surface (FHIS). The surface is fabricated by using DuPont pyralux polyimide as the substrate. Cyanoacrylate is used to adhere the samples of polyimide. The reflection phase response of the FHIS, which is curved in the form of a cylinder, is measured in the anechoic chamber and compared with that of the flat FHIS. As expected, reflection phase characteristics of the curved FHIS are polarization dependent and slightly different than those of the flat one. The measured reflection phase characteristics of the curved FHIS will be compared with simulations which presently are under consideration.
URI
https://hdl.handle.net/11511/69953
DOI
https://doi.org/10.1109/aps.2011.5996856
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Thermal Sensitivity of the Fundamental Natural Frequency of a Resonant MEMS IR Detector Pixel
Pala, Sedat; Azgın, Kıvanç (2017-08-10)
This paper presents the effect of temperature on the natural frequency of (1,1) mode shape of a Resonant MEMS IR bolometer pixel in the range of 295-340 K. The detector pixel has a square plate geometry having side length of 1400 mu m and thickness of 35 mu m. The resonating plate is supported at its geometric center, enabling more robust pixels with fill factor greater than 90% and less complicated fabrication process. The sensor is fabricated using a Silicon-On-Glass (SOG) process. For the first time in t...
Practical Realization of Magnetic Resonance Conductivity Tensor Imaging (MRCTI)
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2013-03-01)
Magnetic resonance conductivity tensor imaging (MRCTI) is an emerging modality which reconstructs images of anisotropic conductivity distribution within a volume conductor. Images are reconstructed based on magnetic flux density distribution induced by an externally applied probing current, together with a resultant surface potential value. The induced magnetic flux density distribution is measured using magnetic resonance current density imaging techniques. In this study, MRCTI data acquisition is experime...
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Alper, Se; Akın, Tayfun (Elsevier BV, 2004-09-21)
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the para...
Performance evaluation of magnetic flux density based magnetic resonance electrical impedance tomography reconstruction algorithms
Eker, Gökhan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2009)
Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs images of electrical conductivity distribution based on magnetic flux density (B) measurements. Magnetic flux density is generated by an externally applied current on the object and measured by a Magnetic Resonance Imaging (MRI) scanner. With the measured data and peripheral voltage measurements, the conductivity distribution of the object can be reconstructed. There are two types of reconstruction algorithms. First type uses current de...
Multi-band polarization independent cylindrical metamaterial absorber and sensor application
Dincer, Furkan; KARAASLAN, MUHARREM; Colak, Sule; TETİK, ERKAN; AKGÖL, OĞUZHAN; ALTINTAŞ, OLCAY; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2016-03-30)
A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, re...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. C. Durgun and C. R. Birtcher, “Physical Realization and Reflection Phase Characteristics of a Flexible High Impedance Surface,” 2011, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/69953.