Resource allocation modelling using methods of feasible directions in phased array radar systems

2007-10-18
In this paper, we report on recent progress results on optimal real-time resource allocation in phased array radar systems. A recently proposed resource allocation approach, Q-RAM, is considered and is observed to generate nonoptimal results. We identify the shortcomings of this method and firstly extend it using Karesh-Kuhn-Tucker (KKT) optimality conditions for the single-resource-type case to obtain a globally optimal algorithm. We later generalize this further for the multiple-resource-type case. However, this particular approach has its origins in quality-of-service domain and is fundamentally limited to sampled cost functions. The availability of empirically obtained sampled convex tracking performance curves for phased array radar, and the feasibility of continuous approximations to these curves lead our study to the consideration of well formulated alternative methods from optimization literature belonging to the Methods of Feasible Directions. We apply in particular the Gradient-Projection Algorithm for the more general multiple resource type case. Our experimental studies using simulated radar performance curves show that superior performance can be obtained in closeness to optimal and execution speed. Closeness to optimality improvement becomes significant in particular for dense target scenarios with large number of targets.
2007 IET International Conference on Radar Systems (15 - 18 Ekim 2007)

Suggestions

Study on Q-RAM and Feasible Directions Based Methods for Resource Management in Phased Array Radar Systems
Irci, Ayhan; Saranlı, Afşar; Baykal, Buyurman (2010-10-01)
Our recent progress and results on optimal real-time resource allocation in phased array radar systems are reported. A previously proposed discrete resource allocation approach, the Quality of Service based Resource Allocation Model (Q-RAM), is analyzed and is observed to generate nonoptimal results. We identify the shortcomings of this method and first extend it using the Karush-Kuhn-Tucker (KKT) optimality conditions for the single resource type case. We obtain an algorithm that delivers a globally optima...
Collaborative Direction of Arrival estimation by using Alternating Direction Method of Multipliers in distributed sensor array networks employing Sparse Bayesian Learning framework
Nurbas, Ekin; Onat, Emrah; Tuncer, Temel Engin (2022-10-01)
In this paper, we present a new method for Direction of Arrival (DoA) estimation in distributed sensor array networks by using Alternating Direction Method of Multipliers (ADMM) in Sparse Bayesian Learning (SBL) framework. Our proposed method, CDoAE, has certain advantages compared to previous distributed DoA estimation methods. It does not require any special array geometry and there is no need for inter -array frequency and phase matching. CDoAE uses the distributed ADMM to update the parameter set extrac...
Functional Size of a Real-Time System
Desharnais, Jean-Marc; Abran, Alain; Dikici, Pinar Efe; Ilis, Mert Can; Karaca, Irfan Nuri;( Abstracts: This paper presents a case study on the implementation of IFPUG FPA and COSMIC software measurement methods for a small real-time system. The two methods were applied separately to measure the functional size of the same software. The main objective of this paper is to explore, through a case study, the issue of the measurement adequacy of each measurement method to capture the functional size of real-time software. For the practitioners, the real issue is that such a 'number' represent adequately the functional size. This number should take into consideration the particularities of specific real-time software and be sensitive to small variations of functionality.; 2009-11-06)
This paper presents a case study on the implementation of IFPUG FPA and COSMIC software measurement methods for a small real-time system. The two methods were applied separately to measure the functional size of the same software. The main objective of this paper is to explore, through a case study, the issue of the measurement adequacy of each measurement method to capture the functional size of real-time software. For the practitioners, the real issue is that such a 'number' represent adequately the funct...
Optimizations of Patch Antenna Arrays Using Genetic Algorithms Supported by the Multilevel Fast Multipole Algorithm
Onol, Can; Ergül, Özgür Salih (2014-12-01)
We present optimizations of patch antenna arrays using genetic algorithms and highly accurate full-wave solutions of the corresponding radiation problems with the multilevel fast multipole algorithm (MLFMA). Arrays of finite extent are analyzed by using MLFMA, which accounts for all mutual couplings between array elements efficiently and accurately. Using the superposition principle, the number of solutions required for the optimization of an array is reduced to the number of array elements, without resorti...
A Monolithic Phased Array with RF MEMS Technology
Sağkol, Hüseyin; Topallı, Kaan; Ünlü, Mehmet; Aydın Çivi, Hatice Özlem; Koç, Seyit Sencer; Demir, Şimşek; Akın, Tayfun (2002-08-07)
This paper reports a monolithic phased array implemented using RF MEMS technology. The phased array is composed of a linear array of four patch antennas and a new phase shifter design, monolithically integrated into a glass substrate. The new phase shifter design consists of two sections: one continuous and one discrete phase shifter. Combination of these two types makes it possible to give continuous and large phase shifts at the same time. The phase shifter can provide a phase shift of about 95/spl deg/ c...
Citation Formats
A. Ircı, A. Saranlı, and B. Baykal, “Resource allocation modelling using methods of feasible directions in phased array radar systems,” presented at the 2007 IET International Conference on Radar Systems (15 - 18 Ekim 2007), Edinburgh; United Kingdom, 2007, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/72944.