Functional Size of a Real-Time System

2009-11-06
Desharnais, Jean-Marc
Abran, Alain
Dikici, Pinar Efe
Ilis, Mert Can
Karaca, Irfan Nuri
This paper presents a case study on the implementation of IFPUG FPA and COSMIC software measurement methods for a small real-time system. The two methods were applied separately to measure the functional size of the same software. The main objective of this paper is to explore, through a case study, the issue of the measurement adequacy of each measurement method to capture the functional size of real-time software. For the practitioners, the real issue is that such a 'number' represent adequately the functional size. This number should take into consideration the particularities of specific real-time software and be sensitive to small variations of functionality.

Suggestions

An Experimental Study on the Reliability of COSMIC Measurement Results
Ungan, Erdir; Demirörs, Onur; Top, Ozden Ozcan; Ozkan, Baris (2009-11-06)
In this paper, we present the results of a functional software size measurement experiment. We have conducted this experiment to analyze variances in functional software size measurement results among individuals. We aimed to isolate the factors that cause these variances. At the end of the study, statistical results are displayed. Common measurement problems were presented including their causes. And finally factors leading to discrepancies were identified based on these findings.
Frequency-domain subspace identification of linear time-periodic (LTP) systems
Uyanık, İsmail; Saranlı, Uluç; Ankaralı, Mustafa Mert; Cowan, Noah J.; Morgül, Ömer (Institute of Electrical and Electronics Engineers (IEEE), 2019-06)
This paper proposes a new methodology for subspace-based state-space identification for linear time-periodic (LTP) systems. Since LTP systems can be lifted to equivalent linear time-invariant (LTI) systems, we first lift input-output data from an unknown LTP system as if they were collected from an equivalent LTI system. Then, we use frequency-domain subspace identification methods to find the LTI system estimate. Subsequently. we propose a novel method to obtain a time-periodic realization for the estimate...
Representing temporal knowledge in connectionist expert systems
Alpaslan, Ferda Nur (1996-09-27)
This paper introduces a new temporal neural networks model which can be used in connectionist expert systems. Also, a Variation of backpropagation algorithm, called the temporal feedforward backpropagation algorithm is introduced as a method for training the neural network. The algorithm was tested using training examples extracted from a medical expert system. A series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The experiments indicated that the alg...
Experimental Analysis and FPGA Implementation of the Real Valued Time Delay Neural Network Based Digital Predistortion
Yesil, Soner; Sen, Cansu; Yılmaz, Ali Özgür (2019-01-01)
This paper presents an FPGA implementation of the Real Valued Time Delay Neural Network (RVTDNN) based digital predistortion with a very low resource utilization and high throughput. The implementation exploits efficient utilization of FPGA primitives and approximation of activation functions that can be realized with simple logic operations. The proposed modifications and constraints on the algorithms have been decided and verified based on a closed-loop adaptive hardware setup including RFHIC RWP03040-1H ...
Applied supervisory control for a flexible manufacturing system
Moor, Thomas; Schmidt, Klaus Verner; Perk, Sebastian (2010-12-01)
This paper presents a case study in the design and implementation of a discrete event system (DES) of real-world complexity. Our DES plant is a flexible manufacturing system (FMS) laboratory model that consists of 29 interacting components and is controlled via 107 digital signals. Regarding controller design, we apply a hierarchical and decentralised synthesis method from earlier work in order to achieve nonblocking and safe closed-loop behaviour. Regarding implementation, we discuss how digital signals tr...
Citation Formats