Investigation of warpage behavior of single crystal silicon on a silicon Adhesive ceramic integrated structure at cryogenic temperatures

2016-03-17
Understanding thermal stress and warpage behavior of heterogeneous component assemblies is vital in infrared sensor applications of silicon semiconductor material. The silicon semiconductor warpage behavior of the integrated structure composed of silicon material itself, an adhesive layer and a ceramic layer is analyzed by both FEM and experimental studies. The studies are performed between room temperature and 80 K. Thickness of each layer has an effect on the warpage. The silicon warpage of the initial baseline trimaterial assembly is calculated as 10.92 μm while the assembly is cooled down from room temperature to 80 K. Parametric FEM analysis were carried out to reduce the warpage of the silicon material to 2.80 μm by altering the material thicknesses. Experimental results and FEM calculations show good coherence not only for the baseline case but also for all experimentally investigated cases. Experiments showed that the warpage of the silicon material is reduced by % 54.4 and it can be decreased further, according to the predictions of FEM analysis.
IMAPS 12th International Conference and Exhibition on Device Packaging (14 - 17 Mart 2016)

Suggestions

Development of high performance uncooled infrared detector materials
Kebapçı, Başak; Akın, Tayfun; Turan, Raşit; Department of Micro and Nanotechnology (2011)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in...
Development of high fill factor and high performance uncooled infrared detector pixels
Küçük, Şeniz Esra; Akın, Tayfun; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 μm, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allo...
Diffraction-Grating-Coupled High Quantum Efficiency InP/InGaAs Quantum Well Infrared Photodetector Focal Plane Array
Arslan, Yetkin; Colakoglu, Tahir; Beşikci, Cengiz (2013-02-01)
Quantum well infrared photodetector (QWIP) is still the sole field proven low-cost long-wavelength infrared photon sensor. We report an impressively high quantum efficiency of 31% in the pixels of a large format (640 x 512) grating-coupled InP/In0.48Ga0.52As QWIP focal plane array (FPA). The InP/InGaAs QWIP FPA with a cut-off wavelength of similar to 9 mu m provided desirable characteristics at a temperature as high as 78 K. The noise-equivalent temperature difference of the FPA with f/2 optics is similar t...
Development and characterization of low-cost uncooled infrared sensors for commercial applications
Tankut, Firat; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2013)
This thesis reports the study on the development and characterization of low-cost uncooled microbolometer type infrared detectors, which are fabricated using standard CMOS and MEMS processes. Characterization of the detectors is the first step of developing infrared sensors with better performance. The characterized pixel has a 70 μm pitch and includes 4 serially connected diodes as the detector circuit. Thermal conductance (Gth), temperature sensitivity (TC) and, optical absorption are measured in scope of...
The First Fabricated Dual-Band Uncooled Infrared Microbolometer Detector with a Tunable Micro-Mirror Structure
Keskin, Selcuk; Akın, Tayfun (2012-04-27)
This paper presents the first fabricated dual-band uncooled resistive infrared thermal microbolometer implemented with a resistive microbolometer and a tunable micro-mirror structure. Tunable reflective micro-mirrors are suspended underneath the suspended resistive microbolometers having a 35 mu m pixel pitch, and they are switched between two positions by the application of an electrostatic force for obtaining different responses in two wavelength infrared atmospheric windows, namely the 3-5 and 8-14 mu m,...
Citation Formats
C. Baloğlu, H. T. Okutucu Özyurt, and Z. Dursunkaya, “Investigation of warpage behavior of single crystal silicon on a silicon Adhesive ceramic integrated structure at cryogenic temperatures,” presented at the IMAPS 12th International Conference and Exhibition on Device Packaging (14 - 17 Mart 2016), Fountain Hills, Amerika Birleşik Devletleri, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73377.