Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Conceptual Design of a Hybrid (Turbofan/solar) Powered UAV
Date
2017-07-03
Author
Mermer, Erdinç
Özgen, Serkan
Metadata
Show full item record
Item Usage Stats
241
views
0
downloads
Cite This
The aim of the study is to design a HALE UAV using both turbofan engine and solar energy in order to obtain at least 24 hours endurance with 250 kg camera and 750 kg battery total 1000 kg payload capacity and 6096m (20000 ft) to 9144 m (30000 ft) service ceiling. During daytime, required power is obtained from solar panels. Morover, excess solar energy is used for charging the lithium-ion battery. It is assumed that turbofan engine is used only for climbing to the required altitude. During loiter, only solar energy and battery power are used. The design methodology consists of two main parts. In the first part, typical conceptual design methodology is used. Weight analysis, wing loading and thrust loading, required power analysis, aircraft performance analysis are performed. While performing the conceptual design, aircraft is assumed as a turbofan-powered aircraft. Due to long wingspan and large wing area, typical structural weight determination techniques are not suitable for the HALE UAV. Therefore, a new structural weight prediction model is used. In the second part of the thesis, solar energy and battery energy are examined in order to assess whether endurance and service ceiling requirements are satisfied. Solar radiation model is used for verification.
URI
https://hdl.handle.net/11511/74870
DOI
https://doi.org/10.13009/EUCASS2017-200
Conference Name
7th European Conference for Aeronautics and Space Sciences, Milan, İtaly, (3 - 06 Temmuz 2017)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Conceptual design of a hybrid (turbofan/solar) powered HALE UAV
Mermer, Erdinç; Özgen, Serkan; Department of Aerospace Engineering (2016)
The aim of the thesis is to design a HALE UAV using both turbofan engine and solar energy in order to obtain 24 hours endurance with 550 lb payload capacity and 30000 ft service ceiling. During daytime, required power is obtained from solar panels. However, excess solar energy is used for charging the lithium-ion battery. It is assumed that turbofan engine is used only for climbing to the required altitude. During loiter, only solar energy and battery power are used. The design methodology consists of two m...
Design of a solar powered unmanned airship
Sönmez, Onur Sinan; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2015)
This thesis presents the design and analysis of a low altitude, high endurance Unmanned Airship which is capable of carrying payloads up to 70 kg to 1000 meters altitude. This UAV has an endurance of 2 weeks and can resist winds up to 90 km/h. It is completely solar powered and it uses Helium as the lifting gas and uses electric motors to change it’s location. The purpose of this thesis is to design an unmanned, completely solar powered airship to be used for various missions such as: reconnaissance mission...
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Energy optimal path planning of an unmanned solar powered aircraft
Pınar, Erdem Emre; Baker, Derek Keıth; Uzgören, Eray; Department of Mechanical Engineering (2013)
In this thesis, energy optimal route of an unmanned solar powered air vehicle is obtained for the given mission constraints in order to sustain the maximum energy balance. The mission scenario and the constraints of the solar powered UAV are defined. Equations of motion are obtained for the UAV with respect to the chosen structural properties and aerodynamic parameters to achieve the given mission. Energy income and loss equations that state the energy balance, up to the position of the UAV inside the atmos...
Aerodynamic and structural design and analysis of an electric powered mini UAV
Demircan, Alpay; Kayran, Altan; Department of Aerospace Engineering (2016)
The aim of this study is to describe the aerodynamic and structural design of an electric powered portable Mini UAV. Conceptual design, structural design and analysis of the wing and detail design phases of the UAV are presented in the study. Fixed wing mini UAV configuration with fixed – pitch propeller has been chosen for the design. In order to provide multi-mission capability, payload of the UAV is designed as a replaceable mission compartment. System requirements and mission profiles of the airplane ar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Mermer and S. Özgen, “Conceptual Design of a Hybrid (Turbofan/solar) Powered UAV,” presented at the 7th European Conference for Aeronautics and Space Sciences, Milan, İtaly, (3 - 06 Temmuz 2017), Milan, İtalya, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74870.