Performance Comparison of two turbine blade pitch controller design methods based on equilibrium and frozen wake assumption,

2019-09-20
This paper focuses on the design methods of two different gain-scheduled collective blade pitch controllers for a 5 MW horizontal axis wind turbine using equilibrium and frozen wake assumptions. The design and performance tests of the controllers are carried out using the MS Bladed Wind Turbine Simulation Model.
Ankara International Aerospace Conference (AIAC 2019)

Suggestions

Dynamic modelling and simulation of a wind turbine
Altuğ, Ayşe Hazal; Yavrucuk, İlkay; Department of Aerospace Engineering (2015)
In this thesis, a dynamic model for a horizontal axis wind turbine is developed for an upwind configuration using the MATLAB/Simulink environment. Blade Element Momentum Theory is used to model the rotor. It is assumed that the rotor blades are rigid and wind speed is uniform. Aerodynamic and gravitational forces are calculated as distributed loads. Verification of the model is done by using the LMS Samtech, Samcef for Wind Turbines software. Aerodynamic properties of the blades, sectional loads and moments...
Genetic algorithm based aerodynamic shape optimization of wind turbine rotor blades using a 2-d panel method with a boundary layer solver
Polat, Özge; Tuncer, İsmail Hakkı; Sezer Uzol, Nilay; Department of Aerospace Engineering (2011)
This thesis presents an aerodynamic shape optimization methodology for rotor blades of horizontal axis wind turbines. Genetic Algorithm and Blade Element Momentum Theory are implemented in order to find maximum power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver, XFOIL, provides viscous aerodynamic data of the airfoils. Optimization variables are selected as the sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of...
Aerodynamic optimization of horizontal axis wind turbine blades by using CST method, BEM theory and genetic algorithm
Oğuz, Keriman; Sezer Uzol, Nilay; Department of Aerospace Engineering (2019)
In this thesis, an aerodynamic design and optimization study for rotor airfoils and blades of Horizontal Axis Wind Turbines (HAWTs) is performed by using different airfoil representations and genetic algorithm. Two airfoil representations, the Class-Shape Transformation (CST) method and the Parametric Section (PARSEC) method, are used for the airfoil geometry designs. Their aerodynamic data is obtained by a potential flow solver software, XFOIL. The Blade Element Momentum (BEM) theory is used to calculate t...
Design and analysis of test rig for small scale wind turbine blade
İçen, Mustafa.; Çöker, Demirkan; Department of Aerospace Engineering (2019)
In this thesis, a test setup for the experimental 5 meter RÜZGEM wind turbine blade and that can be used for small scale wind turbine blades up to 9 meter is designed and analyzed. The purpose of this thesis is to help establishing the test infrastructure under METUWIND project such as NREL, RISØ, CRES. The literature on the existing facilities is reviewed. After that, RÜZGEM wind turbine blade is introduced and design loads are presented. To apply these loads appropriately to the blade, the moment distribu...
Comparative study of transient and quasi-steady aeroelastic analysis of composite wind turbine blade in steady wind conditions
Sargın, Hakan; Kayran, Altan; Department of Aerospace Engineering (2014)
The objective of this study is to conduct a comparative study of the transient and quasi-steady aeroelastic analysis of a composite wind turbine blade in steady wind conditions. Transient analysis of the wind turbine blade is performed by the multi-body dynamic code Samcef Wind Turbine which uses blade element momentum theory for aerodynamic load calculation. For this purpose, a multi-body wind turbine model is generated with rigid components except for the turbine blades. For the purposes of the study, a r...
Citation Formats
M. Şahin and İ. Yavrucuk, “Performance Comparison of two turbine blade pitch controller design methods based on equilibrium and frozen wake assumption,” presented at the Ankara International Aerospace Conference (AIAC 2019), Ankara, Türkiye, 2019, Accessed: 00, 2021. [Online]. Available: http://aiac.ae.metu.edu.tr/paper.php?No=AIAC-2019-189.