Experimental Investigation of Effusion and Film Cooling for Gas Turbine Combustor

2016-07-12
İnanlı, Sinan
Yasa, Tolga
Ulaş, Abdullah
Experimental study was conducted to understand the heat transfer characteristics of film or effusion cooled test plates that represent the gas turbine combustor liner. Two effusion cooling test plates having different hole angles (30 and 75° with horizontal) were used. Film cooling tests were conducted by six different slot geometries. Test geometries were the scaled-up model of real combustor liner. Three different blowing ratios were applied for each test plate geometry. Surface cooling effectiveness was determined for each test condition by measuring the surface temperature distribution by infrared thermography technique. Effects of geometrical and flow parameters on cooling effectiveness were investigated.

Suggestions

Application of TGA-MS technique for oil shale characterization and kinetics
Kök, Mustafa Verşan; Varfolomeev, Mikhail A.; Nurgaliev, Danis K.; Kandasamy, Jayaraman (2022-03-01)
Thermal characteristics and model free kinetics of four different oil shale samples were studied using simultaneous thermogravimetry-mass spectrometer (TGA-MS) analysis performed at three different heating rates and under air atmosphere. All the reaction regions and corresponding peak temperatures, mass loss, and the residue of oil shale samples were determined. Meanwhile, the main volatile products, primary alcohols, and aromatic compounds as products of oil shale combustion, were determined on the basis o...
Experimental Comparison of Performances of Three Different Plates for Gasketed Plate Heat Exchangers
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2012-06-01)
In this study, an experimental set-up for testing chevron type gasketed plate heat exchangers is utilized to investigate the thermal and hydraulic characteristics of different plate geometries. The experiments can be performed using various number of plates and wide range of plate sizes. The experiments are carried out for different temperatures, flow rates, and number of plates so that the Reynolds numbers (300-5250) and Prandtl numbers varies for all plates that have 30 degrees of chevron angle. Correlati...
Numerical simulation of turbine internal cooling and conjugate heat transfer problems with Ra-based turbulance models
Görgülü, İlhan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2012)
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence mode...
EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP OVER RECTANGULAR PROFILE FINS PLACED IN A SQUARE CHANNEL
Aylı, Ece; Kıyıcı, Fırat; Bayer, Özgür; ARADAĞ ÇELEBİOĞLU, SELİN (2014-06-19)
In this study, with the help of a fan, fully developed turbulent flow conditions are experimentally obtained to investigate the heat transfer and pressure drop characteristics of rectangular fins. Fins with different geometries are placed to the bottom surface of a square shaped channel. Finned test pieces are heated by constant heat flux and other parts are kept as well insulated. The effect of fin height to the heat transfer coefficient is investigated by performing experiments. Temperature distributions,...
Experimental investigation of a natural zeolite-water adsorption cooling unit
Solmus, Ismail; KAFTANOĞLU, BİLGİN; Yamali, Cemil; Baker, Derek Keıth (Elsevier BV, 2011-11-01)
In this study, a thermally driven adsorption cooling unit using natural zeolite-water as the adsorbent-refrigerant pair has been built and its performance investigated experimentally at various evaporator temperatures. The primary components of the cooling unit are a shell and tube adsorbent bed, an evaporator, a condenser, heating and cooling baths, measurement instruments and supplementary system components. The adsorbent bed is considered to enhance the bed's heat and mass transfer characteristics; the b...
Citation Formats
S. İnanlı, T. Yasa, and A. Ulaş, “Experimental Investigation of Effusion and Film Cooling for Gas Turbine Combustor,” 2016, Accessed: 00, 2021. [Online]. Available: https://edas.info/web/hefat2016/titles.html.