Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical design and investigation of plasmonic lenses for maximum power focusing
Date
2018-04-13
Author
Güler, Sadri
Sür, Cem Gürkan
Ergül, Özgür Salih
Metadata
Show full item record
Item Usage Stats
164
views
0
downloads
Cite This
We present the design and investigation of plasmonic lenses to achieve maximum power focusing for imaging applications. As opposed to commonly used slits opened on metallic structures, the designs are based on different arrangements of holes on metallic slabs. The structures are obtained via an optimization environment based on a three-dimensional numerical solver using an efficient implementation of the multilevel fast multipole algorithm (MLFMA) and optimization modules using genetic algorithm. We demonstrate the effectiveness of the designs via sample structures involving hexagonal holes on silver slabs.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057298592&origin=inward
https://hdl.handle.net/11511/77109
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Model-based Inversion Methods for Compressive Spectral Imaging with Diffractive Lenses
Dogan, Didem; Öktem, Sevinç Figen (null; 2020-06-22)
We develop novel model-based inversion methods for compressive spectral imaging with diffractive lenses. These fast image reconstruction methods, exploiting data- adaptive convolutional dictionaries and sparsifying transforms, are applicable to any computational imaging problem with convolutional models.
Analysis of vision aided inertial navigation systems
Yuksel, Yigiter; Kaygisiz, H. Burak (2006-04-19)
We propose in this paper a method to integrate inertial navigation systems with electro optic imaging devices. Our method is based on updating the inertial navigation system in a Kalman filter structure using line of sight measurements obtained from a camera. The proposed method is analyzed based on a UAV scenario generated by our trajectory simulator and the results are provided here. The results show that even a single vision aid can improve the performance of inertial navigation system.
Spatial modulation of THz beams for imaging applications
Altan, Hakan (null; 2015-10-16)
Techniques based on compressive sensing allow us to image fields at faster rates and at our labs in METU we have been experimenting with imaging based on spatial modulation of THz beams using single pixel detectors [1]. However these studies are based on discrete patterns using metal sheets. These techniques would benefit greatly if we could modulate the THz field. For example, optical modulators play a key role in optoelectronics and communication systems. Electro-optic, acousto-optic and thermo-optic effe...
Analytical Fresnel imaging models for photon sieves
Öktem, Sevinç Figen; Davila, Joseph M. (The Optical Society, 2018-11-21)
Photon sieves are a fairly new class of diffractive lenses that open unprecedented possibilities for high resolution imaging and spectroscopy, especially at short wavelengths such as UV and x-rays. In this paper, we model and analyze the image formation process of photon sieves using Fourier optics. We derive closed-form Fresnel imaging models that relate an input object to the image formed by a photon sieve system, both for coherent and incoherent illumination. These analytical models also provide a closed...
Camera electronics and image enhancement software for infrared detector arrays
Küçükkömürler, Alper; Akın, Tayfun; Department of Environmental Engineering (2012)
This thesis aims to design and develop camera electronics and image enhancement software for infrared detector arrays. It first discusses the camera electronics suitable for infrared detector arrays, then it concentrates on image enhancement software that are implemented including defective pixel correction, contrast enhancement, noise reduction and pseudo coloring. After that, testing and results of the implemented algorithms were presented. Camera electronics and circuit operation frequency are selected c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Güler, C. G. Sür, and Ö. S. Ergül, “Numerical design and investigation of plasmonic lenses for maximum power focusing,” 2018, vol. 2018, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057298592&origin=inward.