A new channel order estımatıon algorıthm for fır sımo channels

2009-08-04
Karakutuk, Serkan
Tuncer, Temel Engin
Channel order estimation problem is considered for FIR (Finite Impulse Response) modeled single-input multi-output (SIMO) communication systems. The performance of the channel estimation algorithms depends on the accuracy and robustness of the channel order estimation. A new channel order estimation algorithm with high accuracy and robustness is proposed for SIMO systems. The proposed algorithm is based on the least squares smoothing (LSS) algorithm for channel estimation. It is guaranteed to find the true channel order from finite number of samples for noise free case. Several experiments are performed and it is shown that the proposed algorithm significantly enhances the performance in channel order estimation in noisy observations. The comparisons with the alternative techniques show that the proposed method is very effective for the channel order estimation. © EURASIP, 2009.
17th European Signal Processing Conference, 2019

Suggestions

An interactive evolutionary algorithm for the multiobjective relocation problem with partial coverage
Orbay, Berk; Karasakal, Esra; Department of Operational Research (2011)
In this study, a bi-objective capacitated facility location problem is presented which includes partial coverage concept and relocation of facility nodes. In partial coverage, a predefined distance between a demand node and a facility node is assumed to be fully covered. After the predefined distance, the service level commences to decay linearly. The problem is designed to consider the existence of already functioning facility nodes. It is allowed to close these existing facilities and open new facilities ...
Stabilization of the Fast Multipole Method for Low Frequencies Using Multiple-Precision Arithmetic
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2014-08-23)
We stabilize a conventional implementation of the fast multipole method (FMM) for low frequencies using multiple-precision arithmetic (MPA). We show that using MPA is a direct remedy for low-frequency breakdowns of the standard diagonalization, which is prone to numerical errors at short distances with respect to wavelength. By increasing the precision, rounding errors are suppressed until a desired level of accuracy is obtained with plane-wave expansions. As opposed to other approaches in the literature, u...
An interactive preference based multiobjective evolutionary algorithm for the clustering problem
Demirtaş, Kerem; Özdemirel, Nur Evin; Karasakal, Esra; Department of Industrial Engineering (2011)
We propose an interactive preference-based evolutionary algorithm for the clustering problem. The problem is highly combinatorial and referred to as NP-Hard in the literature. The goal of the problem is putting similar items in the same cluster and dissimilar items into different clusters according to a certain similarity measure, while maintaining some internal objectives such as compactness, connectivity or spatial separation. However, using one of these objectives is often not sufficient to detect differ...
Shape Optimizations of Metallic Sheets for Improved Near-Zone Scattering, Reflection, and Focusing Characteristics
Altinoklu, Askin; Ergül, Özgür Salih (2017-10-12)
We consider full-wave analysis and optimizations of metallic sheets to obtain desired electromagnetic responses in the near-zone field intensity and power density distributions. Given a metallic sheet of finite size, deformations are applied to achieve diverse scattering and reflection characteristics, particularly focusing and collecting electromagnetic power at different locations. Optimizations are performed by employing genetic algorithms in a multigrid scheme on the discretized geometry, while each tri...
Stochastic modeling of biochemical systems with filtering and smoothing
Haksever, Merve; Uğur, Ömür; Department of Scientific Computing (2019)
Deterministic modeling approach is the traditional way of analyzing the dynamical behavior of a reaction network. However, this approach ignores the discrete and stochastic nature of biochemical processes. In this study, modeling approaches, stochastic simulation algorithms and their relationships to each other are investigated. Then, stochastic and deterministic modeling approaches are applied to biological systems, Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and JACK-STAT signalin...
Citation Formats
S. Karakutuk and T. E. Tuncer, “A new channel order estımatıon algorıthm for fır sımo channels,” Glasgow; United Kingdom, 2009, p. 2151, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/78562.