Condensation modeling on the fin top of a micro-grooved heat pipe

2017-06-01
Alipour, Mobin
Dursunkaya, Zafer
Heat pipes are used as an alternative to forced cooling systems, especially for cooling current electronic devices which contain concentrated hot spots. Condensation occurs on the top of the fins and approximations to estimate the condensing mass is used in literature. In this study, four different approaches to condensation modeling in micro-grooved heat pipes are discussed. The effect of disjoining pressure, the reverse angles and temperature differences are studied.
26th canadian Congress of Applied Mechanics

Suggestions

PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION
Atay, Atakan; Sariarslan, Busra; Kuscu, Yigit F.; Saygan, Samet; Akkus, Yigit; Gurer, A. Turker; Cetin, Barbaros; Dursunkaya, Zafer (2019-01-01)
Heat pipes are widely used in thermal management of high heat flux devices due to their ability of removing high heat loads with small temperature differences. While the thermal conductivity of standard metal coolers is approximately 100-500 W/m.K, effective thermal conductivities of heat pipes, which utilize phase-change heat transfer, can reach up to 50,000 W/m.K. In industrial applications, commercially available heat pipes are commonly preferred by thermal engineers due to their low cost and versatility...
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
Multi-dimensional modelling of evaporation in the micro region of a micro grooved heat pipe
Akkuş, Yiğit; Dursunkaya, Zafer; Tarman, Işık Hakan; Department of Mechanical Engineering (2015)
Capillary cooling devices are preferred in heat removal from electronic components which are characterized by high heat dissipation rates. Heat pipes use various wick structures to generate the necessary capillary action. Heat pipes that use grooved micro-channels as wick structures, have been widely studied by researchers due to the fact that their simple geometry enables the modelling of fluid flow and heat transfer both analytically and numerically. Near the attachment point of liquid-vapor free surface ...
Modeling guided heat pipe design methodology and experimental validation for flat grooved heat pipes
Saygan, Samet; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-2-24)
Heat pipes are commonly preferred thermal management devices due to their rapid heat transfer characteristics, small size and reliability. It is crucial to design heat pipes that accurately match the requirements of the system to be thermally managed. In the present study, a numerical design and diagnosis simulation tool for heat pipes is developed and verified for grooved heat pipes. A modular heat pipe experimental setup is designed and manufactured. In order to decide on the geometric parameters of the h...
MULTI PHYSICS MODELING OF SILICON BASEDMICRO GROOVED HEAT PIPE
Serdar, Taze; Çetin, Barbaros; Dursunkaya, Zafer (null; 2015-05-28)
Heat pipes have the advantage of transferring large amounts of heat between reservoirs with small temperature differences which makes them preferable for electronics cooling applications. Micro-grooved heat pipes promise the additional advantage of being adaptable to systems which need to be cooled with minimal contact resistance. In this study, a multi-physics computational model is developed to assess the thermal performance of a silicon-based micro-grooved heat pipe. The microfluidic platform consists of...
Citation Formats
M. Alipour and Z. Dursunkaya, “Condensation modeling on the fin top of a micro-grooved heat pipe,” presented at the 26th canadian Congress of Applied Mechanics, Victoria, British Columbia, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79326.