Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling guided heat pipe design methodology and experimental validation for flat grooved heat pipes
Download
12626115.pdf
Date
2021-2-24
Author
Saygan, Samet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
378
views
257
downloads
Cite This
Heat pipes are commonly preferred thermal management devices due to their rapid heat transfer characteristics, small size and reliability. It is crucial to design heat pipes that accurately match the requirements of the system to be thermally managed. In the present study, a numerical design and diagnosis simulation tool for heat pipes is developed and verified for grooved heat pipes. A modular heat pipe experimental setup is designed and manufactured. In order to decide on the geometric parameters of the heat pipe to be tested, the setup is designed by the newly developed simulation tool. Predictions of the tool are validated by both the studies existing in the literature and the experiments conducted in the scope of this thesis. Finally, an innovative groove structure, namely Hierarchical Groove Architecture, is proposed for boosting the capillary pumping and improving evaporation performance, two functions the enhancement of which are important in operating heat pipes with higher performance. The simulations for proving these improvements are modeled and run and the boosting of the capillary pumping is validated with the experiments. The design and diagnosis tool for heat pipes developed in the scope of this thesis will allow researchers/designers to simulate the performance of grooved heat pipes rapidly and accurately and utilization of hierarchical groove architecture will improve both capillary pumping and evaporation performance of heat pipes.
Subject Keywords
Heat pipe modeling
,
Modular experimental design
,
Grooved heat pipe
,
Capillary pumping and evaporation enhancement
,
Hierarchical groove architecture
URI
https://hdl.handle.net/11511/89574
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modeling of multidimensional heat transfer in a rectangular grooved heat pipe /
Odabaşı, Gülnihal; Dursunkaya, Zafer; Department of Mechanical Engineering (2014)
Heat pipes are generally preferred for electronics cooling application due to large heat transfer capacity in spite of small size. Micro heat pipes use small channels, whose dimension is on the order of micrometers, to generate necessary capillary action maintaining fluid flow for heat pipe operation. In the present study a flat micro heat pipe with rectangular cross section is analyzed numerically. A simplified axial fluid flow model is utilized to find liquid-vapor interface shape variation along the heat...
PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION
Atay, Atakan; Sariarslan, Busra; Kuscu, Yigit F.; Saygan, Samet; Akkus, Yigit; Gurer, A. Turker; Cetin, Barbaros; Dursunkaya, Zafer (2019-01-01)
Heat pipes are widely used in thermal management of high heat flux devices due to their ability of removing high heat loads with small temperature differences. While the thermal conductivity of standard metal coolers is approximately 100-500 W/m.K, effective thermal conductivities of heat pipes, which utilize phase-change heat transfer, can reach up to 50,000 W/m.K. In industrial applications, commercially available heat pipes are commonly preferred by thermal engineers due to their low cost and versatility...
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Performance of a flat grooved heat pipe with a localized heat load
Sezmen, Ramazan Aykut; Çetin, Barbaros ; Dursunkaya, Zafer (2021-05-18)
Heat pipes are phase change heat transfer devices used in wide range of heat transport applications due to their high thermal transport capacities with low temperature differences. Heat pipes are especially preferred for electronic cooling applications and aerospace avionics to satisfy high heat transfer rate requirements. In this study, heat transfer and phase change mechanisms of working fluid are investigated and modeled using a 3-D thermal resistance network for multichannel flat grooved heat pipes. Fir...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Saygan, “Modeling guided heat pipe design methodology and experimental validation for flat grooved heat pipes,” Ph.D. - Doctoral Program, Middle East Technical University, 2021.