Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Reconfigurable Microfluidic Transmitarray Unit Cell
Date
2013-04-08
Author
Erdil, Emre
Topalli, Kağan
Zorlu, Özge
Toral, Taylan
Yıldırım, Ender
Külah, Haluk
Aydın Çivi, Hatice Özlem
Metadata
Show full item record
Item Usage Stats
151
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/81094
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
A Reconfigurable Microfluidic Transmitarray Unit Cell
Erdil, Emre; Topalli, Kagan; Zorlu, Ozge; Toral, Taylan; YILDIRIM, ENDER; KÜLAH, HALUK; Aydın Çivi, Hatice Özlem (2013-04-12)
This paper presents a novel microfluidics based approach to develop a reconfigurable circularly polarized transmitarray unit cell. The unit cell comprises double layer nested split ring slots formed as microfluidic channels that can be filled by fluids. Split regions in the slots are realized by injecting liquid metal into the channels. Beam steering is obtained by implementing rotational phase shifting via manipulating the liquid metal in the slots. X-band unit cell prototypes are fabricated on glass subst...
A high voltage spark gap voltmeter with remote control and measurement .
Sarwar, Javed; Department of Electrical Engineering (1983)
A mu g resolution microaccelerometer system with a second-order Sigma-Delta readout circuitry
Kepenek, Reha; Ocak, Ilker Ender; Külah, Haluk; Akın, Tayfun (2008-06-25)
This paper reports a 2(nd) order electromechanical sigma-delta accelerometer system. Accelerometer is fabricated using Dissolved Wafer Process, and has a structural thickness of 15 mu m. A large proof mass is used to decrease the mechanical noise of the accelerometer and 306 fingers per side are used to increase the sensitivity and operation range of the accelerometer. In order to obtain a high resolution, low noise accelerometer system, a fully differential, closed loop, oversampled sigma-delta capacitive ...
A reconfigurable RF MEMS triple stub impedance matching network
Unlu, M.; Topalli, K.; Atasoy, H.I.; Temocin, E.U.; Istanbulluoglu, I.; Bayraktar, O.; Demir, Şimşek; Civi, O.A.; Koç, Seyit Sencer; Akın, Tayfun (2006-09-12)
This paper presents a reconligurable triple stub impedance matching network using RF MEMS technology centered at 10GHz. The device is capable of covering impedances on the whole Smith Chart. The device structure consists of three variable length stubs which are designed as distributed MEMS transmission lines and two lambda(g)/8 length CPW transmission fines connecting the stubs. The variable length stubs are implemented with 12 MEMS switches over CPW lines and CPW lines connecting the switches. lambda(g)/8 ...
A wireless batch sealed absolute capacitive pressure sensor
Akar, O.; Akın, Tayfun; Najafi, K. (Elsevier BV, 2001-12-15)
This paper reports the development of an absolute wireless pressure sensor that consists of a capacitive sensor and a gold-electroplated planar coil. Applied pressure deflects a 6 mum-thin silicon diaphragm, changing the capacitance formed between it and a metal electrode supported on a glass substrate. The resonant frequency of the LC circuit formed by the capacitor and the inductor changes as the capacitance changes; this change is sensed remotely through inductive coupling, eliminating the need for wire ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Erdil et al., “A Reconfigurable Microfluidic Transmitarray Unit Cell,” 2013, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/81094.