Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical Investigation of the Boussinesq equations through a Subgrid Artificial Viscosity Method
Date
2019-10-04
Author
Demir, Medine
Kaya Merdan, Songül
Metadata
Show full item record
Item Usage Stats
162
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/84673
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical investigation of dbd in neon:effect of fluid modelling approaches
Somay, Mehmet Hilmi; Rafatov, İsmail; Department of Physics (2021-2-11)
The study deals with numerical modelling of dielectric barrier discharge (DBD) in Neon gas. The DBD models are based on the drift-diffusion theory of gas discharges. Two different approaches, namely, the so called simple and extended fluid models, are followed. Within the simple fluid model, the ionization rate is approximated by the Townsend formula as a function of the local electric field. In the framework of the extended fluid model, the electron transport (mobility and diffusion) coefficients as well a...
Numerical Investigation of an S-Duct Diffuser at Different Inlet Boundary Conditions
Aslan, Samet; Kurtuluş, Dilek Funda (null, 2018-01-01)
Numerical modeling of wave diffraction in one-dimensional shoreline change model
Baykal, Cüneyt; Ergin, Ayşen; Department of Civil Engineering (2006)
In this study, available coastal models are briefly discussed and under wind waves and a numerical shoreline change model for longshore sediment transport based on “one-line” theory is developed. In numerical model, wave diffraction phenomenon in one-dimensional modeling is extensively discussed and to represent the irregular wave diffraction in the sheltered zones of coastal structures a simpler approach based on the methodology introduced by Kamphuis (2000) is proposed. Furthermore, the numerical model re...
Numerical investigation of free surface and pipe flow problems by smoothed particle hydrodynamics
Dinçer, Ali Ersin; Bozkuş, Zafer; Department of Civil Engineering (2017)
In the present study, a two-dimensional (2D) computer code for free surface and pipe flows is developed by using Smoothed Particle Hydrodynamics (SPH) approach. For free surface flow problem, idealized dam break problems are investigated numerically. The results of three recently published experimental studies are used to validate the numerical solutions. In addition to mesh-free particle method, SPH with a novel boundary treatment model proposed in the present study, mesh-based methods with turbulence and ...
Numerical simulation of two-dimensional collisionless plasma flows under the effect of electrostatic forces via particle in cell method
Tümüklü, Özgür; Çelenligil, Mehmet Cevdet; Şengil, Nevsan; Department of Aerospace Engineering (2013)
Taking its name from its ability to generate thrust via electricity, the concept of electric propulsion has important space mission applications like station keeping for satellites and deep space probe. However, contamination of plumes in electric propulsion systems with ion beam could hinder communication, and effective neutralization is essential to clear away this predicament. Today, computer simulation is regarded as a powerful tool to investigate plasma behavior in the plumes of electric propulsion dev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Demir and S. Kaya Merdan, “Numerical Investigation of the Boussinesq equations through a Subgrid Artificial Viscosity Method,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84673.