Design of Zeolite Modified Electrodes and Their Influence on Biosensor Performance

2016-11-27
Ozansoy Kasap, Berna
Akata Kurç, Burcu
Enzyme-based biosensors have been of intense investigation and field-effect transistor (FET)-based sensors are one of the widely produced, miniaturized silicon-based semiconductor devices used to quantify ion concentrations in the analyte solution. Overall, current research has focused on enhancement of the sensitivity, detection limit, selectivity and the storage stability of these electrochemical biosensors. For this purpose, variety of modification methods on electrochemical biosensor surfaces is proposed. At present, use of new nanosized materials in biosensor design is a promising approach to improve analytical characteristics of the devices. Zeolites are perspective nanomaterials for biosensor modification. They are inorganic compounds, the structure of which is a crystal lattice consisting of alumina and silica tetrahedra bound by oxygen atoms. This framework forms a lot of pores and channels which considerably increases the zeolite surface. In the current study, a review on precise control over structural and chemical properties of zeolites and their consequent effect on electro-chemical biosensors will be given. All results suggest that the methodology of surface immobilization and zeolitic properties such as Si/Al ratio, surface roughness, particle size, hydrophilicity and the ability to create gold nanoparticles within the nanopores effect and ultimately enhance the biosensor sensitivity and stability. Considering the important biological role of urea as a diagnostic indicator of kidney failure and major uremic toxin, its determination was needed in medical diagnostics. It was shown that distinction of healthy people from people with renal dysfunction became easier by zeolite modified biosensors. Our results show that the performance of constructed ISFET-type biosensors strongly depends on Si/Al ratio of employed zeolite nanoparticles as well as the type of enzymatic reaction employed. All fabricated biosensors demonstrated high signal reproducibility and stability. The obtained results were used for the development and design for an experimental prototype of novel nanobiosensor located implant.
Materials Research Society Meeting Fall 2016, ( 27 Kasım - 02 Aralık 2016)

Suggestions

Development and characterization of low-cost uncooled infrared sensors for commercial applications
Tankut, Firat; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2013)
This thesis reports the study on the development and characterization of low-cost uncooled microbolometer type infrared detectors, which are fabricated using standard CMOS and MEMS processes. Characterization of the detectors is the first step of developing infrared sensors with better performance. The characterized pixel has a 70 μm pitch and includes 4 serially connected diodes as the detector circuit. Thermal conductance (Gth), temperature sensitivity (TC) and, optical absorption are measured in scope of...
Design and implementation of a sic based three phase grid-connected current source inverter for solar applications
Bay, Olcay; Ermiş, Muammer; Bilgin, Hazım Faruk; Department of Electrical and Electronics Engineering (2017)
In this thesis, analysis, design and implementation of a three-phase 400V, 20 kVA Current Source Inverter (CSI) have been carried out for grid-connected photovoltaic applications based on the multi-string inverter concept. This inverter can be used in large scale photovoltaic (PV) applications by connecting many in parallel at 400V and coupling to medium voltage through a common transformer. The power stage of the inverter is based on the basic full-bridge CSC topology and each power semiconductor which mus...
Design and performance of a hybrid fast and thermal neutron detector
Singh, M. K.; Sonay, A.; DENİZ, MUHAMMED; Agartioglu, M.; Asryan, G.; Kumar, G. Kiran; Li, H. B.; Li, J.; Lin, F. K.; Lin, S. T.; Sharma, V.; Singh, L.; Singh, V.; Subrahmanyam, V. S.; Soma, A. K.; Wong, H. T.; Yang, S. W.; Yildirim, I. O.; Yue, Q.; Zeyrek, Mehmet Tevfik (2017-10-01)
We report the characterization, calibration and performance of a custom-built hybrid detector consisting of BC501A liquid scintillator and BC702 scintillator for the detection of fast and thermal neutrons, respectively. Pulse Shape Discrimination techniques are developed to distinguish events due to gamma-rays, fast and thermal neutrons. Software analysis packages are developed to derive raw neutron energy spectra from measured proton recoil spectra. The validity is demonstrated through the reconstruction o...
Development of high performance uncooled infrared detector materials
Kebapçı, Başak; Akın, Tayfun; Turan, Raşit; Department of Micro and Nanotechnology (2011)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in...
Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials
Wolowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, Raşit; Yerci, Selçuk (2008-01-01)
This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP 'SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 mu m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of 'time-of-flight' io...
Citation Formats
B. Ozansoy Kasap and B. Akata Kurç, “Design of Zeolite Modified Electrodes and Their Influence on Biosensor Performance,” presented at the Materials Research Society Meeting Fall 2016, ( 27 Kasım - 02 Aralık 2016), 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/85554.