Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Integrated Thermopile Structure with High Responsivity and Detectivity in Any Standard CMOS Technology
Date
1997-06-19
Author
Olgun, Zeynel
Akar, Orhan
Külah, Haluk
Akın, Tayfun
Metadata
Show full item record
Item Usage Stats
64
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/86810
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
An integrated thermopile structure with high responsivity using any standard CMOS process
Olgun, Z; Akar, O; Külah, Haluk; Akin, T (1997-01-01)
This paper reports a new thermopile structure using n-poly/p(+)-active layers that are available in any CMOS technology. The thermopile structures are obtained by post-etching of the fabricated and bonded chips. P+-active layers are placed in n-well regions, which are protected from etching by electrochemical etch-stop technique in a TMAH solution. The characterization results show that Seebeck coefficients of the n-poly and p(+)-active layers are -335 mu V/K and 450 mu V/K, respectively. Tests show that a ...
An integrated thermopile structure with high responsivity using any standard CMOS process
Akın, Tayfun; Akar, Orhan; Külah, Haluk (1998-04-01)
This paper reports a new thermopile structure using n-poly/p(+)-active layers that are available in any CMOS technology. The thermopile structures are obtained by post-etching of the fabricated and bonded chips. P+-active layers are placed in n-well regions, which are protected from etching by the electrochemical etch-stop technique in a TMAH solution. The n-well regions are then removed using a short EDP etching to reduce the thermal conductivity of the suspended structures, improving the responsivity sign...
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
An Algorithmic fault-tolerant control architecture without actuator redundancy
Marangoz, Alp; Kutay, Ali Türker; Department of Aerospace Engineering (2018)
In this thesis work, a novel algorithmic fault tolerant control system architecture against actuator failures is developed. The method is based on injection of perturbations on the controlled states that are connected to healthy actuators, in order to compensate for the failed components and maintain overall stabilization of the system. An adaptive state estimator structure is used for detection of faults and fault mitigation perturbations are generated from a singularly perturbed dynamic system, which is a...
An Efficient Hybrid Beamforming and Channel Acquisition for Wideband mm-Wave Massive MIMO Channels
Kurt, Anıl; Güvensen, Gökhan Muzaffer (2019-01-01)
In this paper, an efficient hybrid beamforming architecture together with a novel spatio-temporal receiver processing is proposed for single-carrier (SC) mm-wave wideband massive MIMO channels in time-domain duplex (TDD) mode. The design of two-stage beamformers is realized by using a virtual sectorization via second-order channel statistics based user grouping. The novel feature of the proposed architecture is that the effect of both inter-group-interference (due to non-orthogonality of virtual angular sec...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Olgun, O. Akar, H. Külah, and T. Akın, “An Integrated Thermopile Structure with High Responsivity and Detectivity in Any Standard CMOS Technology,” 1997, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86810.