Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Device for viscoelastic assessment of the residual limb bulk soft tissue response to load
Date
1999-12-01
Author
Silver-thorn, M.b.
Tönük, Ergin
Metadata
Show full item record
Item Usage Stats
138
views
0
downloads
Cite This
An extant tissue tester designed for rate-controlled indentation of the bulk soft tissues of lower extremity residual limbs was modified to include force feedback (proportional control) and enable creep testing. This device employs a digital linear actuator and a load cell that measures the reaction force resulting from tissue indentation. The current force value, f, is compared to the target force (ft) prescribed by the user. If the force falls outside of the region: 0.99 ft<f<1.01 ft, the device indents (f<ft) or retracts (f>ft) proportionally, based on the relative difference between f and ft.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033342264&origin=inward
https://hdl.handle.net/11511/88279
Conference Name
Proceedings of the 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Fall Meeting of the Biomedical Engineering Society (1st Joint BMES / EBS), (13 - 16 Ekim 1999),
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Predicting time-dependent remodeling of bone around immediately loaded dental implants with different designs
Eser, Atilim; Tönük, Ergin; Akça, Kıvanç; Cehreli, Murat Cavit (Elsevier BV, 2010-01-01)
The purpose of this study was to predict time-dependent biomechanics of bone around cylindrical screw dental implants with different macrogeometric designs under simulated immediate loading condition. The remodeling of bone around a parallel-sided and a tapered dental implant of same length was studied under 100 N oblique load by implementing the Stanford theory into three-dimensional finite element models. The results of the analyses were examined in five time intervals consisting loading immediately after...
Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width
Eser, Atilim; Tönük, Ergin; Akça, Kıvanç; Dard, Michel M.; Cehreli, Murat Cavit (Elsevier BV, 2013-09-03)
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium-zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in pen-implant bone and ...
Investigation of tensile strength of hydroxyapatite with various porosities by diametral strength test
Evis, Zafer (2008-04-01)
It is appropriate to administer the diametral test to biomedical materials used in dental applications because stresses formed on dental implants are similar to those that formed in this test. To show this similarity, an experimental study of diametral strength testing of hydroxyapatite was performed. The influence of porosity on hydroxyapatite was investigated experimentally to determine how the diametral strength was affected. Hydroxyapatite was air sintered at 1100 degrees C for 1 h with porosities rangi...
Patient-specific orthopedic implant design and production with tissue engineering method
Büyüksungur, Senem; Hasırcı, Vasıf Nejat; Department of Biotechnology (2019)
Customized and patient specific, tissue engineered constructs are needed for the treatment of irregular shaped bone defects. This study presents the preparation of two different 3D printed scaffolds. 1) PCL-based scaffolds modified with nanohydroxyapatite (HAp) and poly(propylene fumarate) (PPF), and 2) Cell carrying hybrid scaffolds of PCL/GelMA. 3D printed, PCL-based scaffolds were coated with HAp or HAp/PPF before cell seeding and their presence enhanced osteoconductivity and compressive mechanical stren...
A Computational Study on the Characteristics of Airflow in Bilateral Abductor Vocal Fold Immobility
Goekcan, M. Kuersat; Kurtuluş, Dilek Funda; Uestuener, Evren; Oezyuerek, Elif; Kesici, G. Goekcen; ERDEN, S. Ceyhan; Dursun, Guersel; Yagci, Cemil (Wiley, 2010-09-01)
Objectives/Hypothesis: To evaluate airway sufficiency and airflow dynamics in a group of patients who underwent a posterior transverse laser cordotomy (PTLC) procedure.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. b. Silver-thorn and E. Tönük, “Device for viscoelastic assessment of the residual limb bulk soft tissue response to load,” Atlanta, GA, USA, 1999, vol. 1, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033342264&origin=inward.