Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ALX4 dysfunction disrupts craniofacial and epidermal development
Date
2009-11-01
Author
Kayserili, Hulya
Uz, Elif
Niessen, Carien
VARGEL, İBRAHİM
ALANAY, Yasemin
Tuncbilek, Gokhan
Yigit, Gokhan
Uyguner, Oya
Candan, Sukru
Okur, Hamza
Kaygın, Serkan
Balci, Sevim
Mavili, Emin
Alikasifoglu, Mehmet
Haase, Ingo
Wollnik, Bernd
Akarsu, Nurten Ayse
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
Genetic control of craniofacial morphogenesis requires a complex interaction of numerous genes encoding factors essential for patterning and differentiation. We present two Turkish families with a new autosomal recessive frontofacial dysostosis syndrome characterized by total alopecia, a large skull defect, coronal craniosynostosis, hypertelorism, severely depressed nasal bridge and ridge, bifid nasal tip, hypogonadism, callosal body agenesis and mental retardation. Using homozygosity mapping, we mapped the entity to chromosome 11p11.2-q12.3 and subsequently identified a homozygous c.793C -> T nonsense mutation in the human ortholog of the mouse aristaless-like homeobox 4 (ALX4) gene. This mutation is predicted to result in a premature stop codon (p.R265X) of ALX4 truncating 146 amino acids of the protein including a part of the highly conserved homeodomain and the C-terminal paired tail domain. Although the RNA is stable and not degraded by nonsense-mediated RNA decay, the mutant protein is likely to be non-functional. In a skin biopsy of an affected individual, we observed a hypomorphic interfollicular epidermis with reduced suprabasal layers associated with impaired interfollicular epidermal differentiation. Hair follicle-like structures were present but showed altered differentiation. Our data indicate that ALX4 plays a critical role both in craniofacial development as in skin and hair follicle development in human.
URI
https://hdl.handle.net/11511/88604
Journal
HUMAN MOLECULAR GENETICS
DOI
https://doi.org/10.1093/hmg/ddp391
Collections
Graduate School of Informatics, Article
Suggestions
OpenMETU
Core
INTEGRATION OF MACHINE LEARNING AND ENTROPY METHODS FOR POST-GENOME-WIDE ASSOCIATION STUDIES ANALYSIS
Yaldız, Burcu; Aydın Son, Yeşim; Department of Medical Informatics (2022-8-31)
Non-linear relationships between genotypes play an essential role in understanding the genetic interactions of complex disease traits. Genome-Wide Association Studies (GWAS) have revealed a statistical association between the SNPs in many complex diseases. As GWAS results could not thoroughly explain the genetic background of these disorders, Genome-Wide Interaction Studies started to gain importance. In recent years, various statistical approaches such as entropy-based methods have been suggested for revea...
APOBEC3B expression in drug resistant MCF-7 breast cancer cell lines
Onguru, Onder; Yalcin, Serap; Rosemblit, Cinthia; Zhang, Paul J.; Kilic, Selim; Gündüz, Ufuk (2016-04-01)
APOBEC3B belongs to a protein family of cytidine deaminases that can insert mutations in DNA and RNA as a result of their ability to deaminate cytidine to uridine. It has been shown that APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers. We investigated APOBEC3B expression in four drug resistant breast cancer cell lines (Doxorubicin, Etoposide, Paclitaxel and Docetaxel resistant MCF-7 cell lines) using a novel RNA in situ hybridization technology (RNAscope) and compare...
Functional characterization of microrna-125b expression in MCF7 breast cancer cell line
Tuna, Serkan; Erson Bensan, Ayşe Elif; Department of Biology (2010)
microRNA dependent gene expression regulation has roles in diverse processes such as differentiation, proliferation and apoptosis. Therefore, deregulated miRNA expression has functional importance for various diseases, including cancer. miR-125b is among the commonly downregulated miRNAs in breast cancer cells . Therefore we aimed to characterize the effects of miR-125b expression in MCF7 breast cancer cell line (BCCL) to better understand its roles in tumorigenesis. Here, we investigated mir-125 family mem...
intI1 Type Mobile Genetic Elements Co-selected Antibiotic-Resistant Genes in Untreated Hospital Wastewaters
Kayali, Osman; İçgen, Bülent (2021-01-01)
Dissemination of antibiotic-resistant genes (ARGs) from hospital wastewaters (HWWs) is facilitated by the horizontal gene transfer (HGT) and involves association of ARGs with mobile genetic elements (MGEs). In our previous study, HWWs were found to have relatively high copy numbers of ARGs aadA, tetA, cmlA, sul1, and qnrS. In this study, therefore, the same HWWs were also monitored for 3 MGEs class 1 integron (intI1), insertion sequence common region 1 (ISCR1) and conjugative transposon Tn916/Tn1545 by usin...
Comparing Clustering Techniques for Real Microarray Data
Purutçuoğlu Gazi, Vilda (2012-08-29)
The clustering of genes detected as significant or differentially expressed provides useful information to biologists about functions and functional relationship of genes. There are variant types of clustering methods that can be applied in genomic data. These are mainly divided into the two groups, namely, hierarchical and partitional methods. In this paper, as the novelty, we perform a detailed clustering analysis for the recently collected boron microarray dataset to investigate biologically more interes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Kayserili et al., “ALX4 dysfunction disrupts craniofacial and epidermal development,”
HUMAN MOLECULAR GENETICS
, pp. 4357–4366, 2009, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88604.