Development of a procedure to model the mechanical behavior of composites with embedded element method by considering the matrix non-linearity

Gürses, Ercan
Embedded element method is considered to be a reliable and efficient method to analyze the mechanical behavior of composite materials. However, the predicted behavior of individual constituents can be inaccurate in case the fiber stiffness is close to the matrix stiffness and matrix nonlinearity is present. The redundant volume existing in the embedded region causes this problem. In this work, a procedure that solves this redundant volume problem is developed while considering the matrix non-linearity. Because of this nonlinearity, material properties of the redundant volume changes in each loading step and each point in the material. Thus, after each analysis step, the results of the redundant volume are transferred into the next step and material properties of the embedded region is updated according to their position. Two user subroutines were used in conjunction to implement this procedure. The results indicate that with the developed procedure, the behavior of constituents is predicted with a good accuracy. Additional analyses show that the method is quite versatile, such that it works for various boundary conditions, element types and fiber volume fractions.


Development of a shell finite element for large deformation analysis of laminated composites
Yıldız, Tuba; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
The objective of the present work is to investigate the behavior of laminated fiber -reinforced polymer matrix composite shell structures under bending load with the help of a modified finite element computer code which was previously developed for the analysis of pseudo-layered single material shells. The laminates are assumed to be orthotropic and the formulation is adapted to first order shear deformation theory. The aim is to determine the large deformation characteristics numerically, and to predict th...
Kusyilmaz, Ahmet; Topkaya, Cem (2016-12-09)
This paper describes formulation of a hand method which can be used to estimate the computed fundamental periods of vibration of steel eccentrically braced frames (EBFs). The developed method uses the Rayleigh's method as a basis and utilizes the roof drift ratio under seismic forces as a parameter. The roof drift ratio was obtained from EBF designs by considering different seismic hazard, number of stories, braced bay width, and link length to bay width ratio. A simple expression was developed to represent...
Choice and development of a preconditioner for Newton-GMRES algorithm
Muslubaş, Yunus Emre; Eyi, Sinan; Department of Aerospace Engineering (2015)
This thesis consists of the choice, application and analysis of a preconditioner for a supersonic flow solution through Newton-GMRES (generalized minimal residual) Krylov subspace method and the comparison of the results with unpreconditioned Newton-GMRES method and Newton’s methods. Three dimensional Euler equations are used for the analysis. These Euler equations are discretized, then solved using Newton’s method and the generalized minimal residual method is used to solve the resulting linear system. The...
A coordinate transformation approach for efficient repeated solution of Helmholtz equation pertaining to obstacle scattering by shape deformations
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2014-06-01)
A computational model is developed for efficient solutions of electromagnetic scattering from obstacles having random surface deformations or irregularities (such as roughness or randomly-positioned bump on the surface), by combining the Monte Carlo method with the principles of transformation electromagnetics in the context of finite element method. In conventional implementation of the Monte Carlo technique in such problems, a set of random rough surfaces is defined from a given probability distribution; ...
A novel approach to detection of some parameters of induction motors
Özlü Ertan, Hatice Gülçin; Colak, Baris (2007-05-05)
This paper describes a novel approach for offline stator leakage inductance and online stator resistance estimation that can be used for self-tuning of induction motor drives. The paper briefly describes the theory behind the approach. The proposed methods are experimentally tested on an industrial induction motor and also tested on a washing machine motor designed for variable speed operation. Test results are given and the robustness of the approach is illustrated.
Citation Formats
A. ŞIK, E. Gürses, and B. SABUNCUOĞLU, “Development of a procedure to model the mechanical behavior of composites with embedded element method by considering the matrix non-linearity,” COMPOSITE STRUCTURES, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: