Arid4b alters cell cycle and cell death dynamics during mouse embryonic stem cell differentiation.

Download
2021-02-09
Cell division and death play an important role in embryonic development. Cell specialization is accompanied with slow proliferation and quiescence. Cell death is important for morphogenesis. Gene expression changes during differentiation is coordinated by lineage-specific transcription factors and chromatin factors. It is not yet fully understood how alterations in gene expression and cell cycle/death mechanisms are connected. We previously identified a chromatin protein Arid4b as a critical factor for meso/ endoderm differentiation of mouse embryonic stem cells (mESCs). The differentiation defect of Arid4b-deficient mESCs might be due to misregulation of cell proliferation or death. Here, we identified a role for Arid4b in cell cycle rewiring at the onset of differentiation. Arid4b-deficient differentiating cells have less proliferative capacity and their cell cycle profile is more similar to mESC stage than the differentiating wild-type cells. We found no evidence of increased DNA damage or checkpoint activation. Our investigation of cell death mechanisms found no contribution from autophagy but revealed a slight increase in Caspase-3 activation implying early apoptosis in Arid4b-deficient differentiating cells. Taken together, our data suggest Arid4b regulates cell cycle alterations during exit from pluripotency. Future studies will be instrumental in understanding whether these changes directly contribute to Arid4b-dependent differentiation control.
Turkish journal of biology = Turk biyoloji dergisi

Suggestions

Arid4b physically interacts with Tfap2c in mouse embryonic stem cells
Keskin, Ezgi Gul; Huang, Jialiang; Terzi Çizmecioğlu, Nihal (2021-01-01)
Precise regulation of gene expression is required for embryonic stem cell (ESC) differentiation. Transcription factor (TF) networks coordinate the balance of pluripotency and differentiation in response to extracellular and intracellular signals. Chromatin factors work alongside TFs to achieve timely regulation of gene expression for differentiation process. Our previous studies showed that a member of the Sin3a corepressor complex, Arid4b, is critical for proper mouse ESC differentiation into mesoderm and ...
Role of Vibrational Spectroscopy in Stem Cell Research
Aksoy, Ceren; Severcan, Feride (2012-01-01)
Recent researches have mainly displayed the significant role of stem cells in tissue renewal and homeostasis with their unique capacity to develop different cell types. These findings have clarified the importance of stem cells to improve the effectiveness of any cell therapy for regenerative medicine. Identification of purity and differentiation stages of stem cells are the greatest challenges of stem cell biology and regenerative medicine. The existing methods to carefully monitor and characterize the ste...
ARID3B expression in primary breast cancer samples
Oğuz Erdoğan, Ayşe Selcen; Erson Bensan, Ayşe Elif; Department of Biology (2014)
ARID3B (AT-rich interaction domain 3) is a member of the family of ARID proteins, which constitutes evolutionarily conserved transcription factors implicated in normal development, differentiation, cell cycle regulation and chromatin remodeling. In addition, ARID3B has been linked to cellular immortalization, epithelial-mesenchymal transition (EMT) and tumorigenesis. Given the emerging roles of ARID3B in tumor development, we examined its expression in primary patient-derived breast cancer samples to furthe...
Numerical modeling and experimental investigation of cell manipulation using acoustophoresis
Karaman, Alara; Özer, Mehmet Bülent; Department of Mechanical Engineering (2022-8-24)
Several diseases, such as sickle cell disease and cancer, can affect the properties of cells. Manipulation or separation of the altered cell is necessary to diagnose such diseases. Acoustophoresis, the migration of particles by using acoustic standing waves, is a promising technique for bio-particle manipulation. This thesis presents numerical modelling and experimental investigation of using acoustophoresis for cell manipulation purposes. First, the trajectories of the cells in an acoustophoretic chip are ...
SETD3-dependent gene expression changes during endoderm differentiation of mouse embryonic stem cells
Balbaşı, Emre; Terzi Çizmecioğlu, Nihal; Department of Biology (2022-2-09)
Mouse embryonic stem cells (mESCs) are pluripotent cells that have self renewal capability. They can differentiate into all three primary germ layers: mesoderm, endoderm, and ectoderm during embryonic development. The embryonic development is controlled via spatiotemporal regulation of gene expression changes. The collaborative effects of Wnt, Nodal, BMP signaling pathways help form the primitive streak, and the subsequent definitive endoderm layer in the gastrulating embryo. Deactivation of core pluripoten...
Citation Formats
G. Güven and N. Terzi Çizmecioğlu, “Arid4b alters cell cycle and cell death dynamics during mouse embryonic stem cell differentiation.,” Turkish journal of biology = Turk biyoloji dergisi, pp. 56–64, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89113.