Characterization of gas turbine burner instabilities by wavelet analysis of infrared images

Allouis, Christophe Gerard
Amoresano, A.
Langella, G.
Niola, V.
Quaremba, G.
In this paper, an optical approach is tested to spatially characterize combustion fluctuations in a single burner atmospheric gas turbine test rig. The target of present investigation was to test the optical technique during combustion tests campaign, in order to couple it to an acoustic one in a future activity to be developed on the same experimental setup. The analysis based on fast infrared imaging of flames, coupled with photomultiplier and microphones measurements, has been elaborated on a 3 MW gas turbine test rig equipped with full scale burner tested in atmospheric conditions. The rig has been purposely designed to be tuned on acoustic frequencies detected in the real gas turbine machine equipped with 24 burners and operating at 20 bars. The tests evidenced main oscillations at low frequencies around 82 Hz and 146 Hz. These frequencies have been recorded in real machine too. The IR technique allowed to identify these frequencies in the 2D dimensions under humming conditions. The results obtained by IR presented a good agreement with microphones and optical measurements. Moreover, further investigation based on wavelet analysis came out as an interesting tool to develop a methodology for fingerprinting different burners operating in different conditions from thermoacoustic point of view. (C) 2015 Elsevier Inc. All rights reserved.


Analysis of regenerative cooling ın liquid propellant rocket engines
Boysan, Mustafa Emre; Ulaş, Abdullah; Department of Mechanical Engineering (2008)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown ...
Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics
Sezgin, Berna; Caglayan, Dilara Gulcin; DEVRİM, YILSER; Steenberg, Thomas; Eroğlu, İnci (2016-06-22)
The objective of this study is to observe the effect of the critical design parameters, velocities of inlet gases (hydrogen and air) and the conductivity of polymer membrane, on the performance of a high temperature PEM fuel cell. A consistent and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state, three-dimensional PEM fuel cell in order to observe concentration profiles, current density profiles and polarization ...
Assessment of a frequency-domain linearised Euler solver for turbofan aft radiation predictions and comparison with measurements
Özyörük, Yusuf (2010-03-31)
This paper presents a frequency-domain computational aeroacoustics tool for predicting aft noise radiation through turbofan ducts and jets and its application to two realistic engine exhaust configurations which have been experimentally tested. The tool is based on the discretised axisymmetric form of the linearised Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The resultant linear system of equations is inver...
Design of a pintle injector
Erkal, Berksu; Aksel, Mehmet Haluk.; Department of Mechanical Engineering (2019)
Pintle injector design methodology for liquid oxygen/gaseous methane rocket engine is investigated with this study. Cold flow experimental work is conducted with water and air to investigate the characteristics of designed injectors by observing spray formations. 750N at maximum thrust with 3:1 throttle ability is chosen as mission requirement. 3 different reservoir geometries are manufactured and experimental investigation is conducted to ensure uniform and axisymmetric spray cone. After decision of the fi...
Citation Formats
C. G. Allouis, A. Amoresano, G. Langella, V. Niola, and G. Quaremba, “Characterization of gas turbine burner instabilities by wavelet analysis of infrared images,” EXPERIMENTAL THERMAL AND FLUID SCIENCE, pp. 94–100, 2016, Accessed: 00, 2021. [Online]. Available: