Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A review of synthesis methods, properties and use of monetite cements as filler for bone defects
Date
2021-05-01
Author
Motameni, Ali
Alshemary, Ammar Z.
Evis, Zafer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
292
views
0
downloads
Cite This
The major objective of the current review is to highlight the prime importance of bone cements particularly monetite cement as filler to treat various bone defects which may result due to osteoporosis, some accidents, some trauma disease or any other orthopedic surgical disorders. Previous studies showed that polymethyl methacrylate (PMMA), calcium phosphate cements (CPCs), dicalcium phosphate (DCP) cement and acrylic polymer cements have been employed to improve the bone defects, but these materials have a certain issue of insitu setting. To overcome these problems, concentration was swiftly diverted towards monetite cement which revealed better results. Therefore, in this review, more focus has been given to the monetite cement. In this work, a brief but very productive discussion has also been inducted about the various synthetic routes to synthesize monetite cement and its properties which will help the readers to get key information about the growing significance of monetite cement as a bone filler and its future use and importance. The main theme of this review is to highlight the tremendous achievements achieved in the monetite cementing materials and their further scope in the near future as to upgrade their properties and use in the biomedical field.
Subject Keywords
Biomaterials
,
Calcium phosphate cement
,
Acrylic bone cement
,
Monetite bone cement
,
Synthetic methods
,
Mechanical and biological properties
URI
https://hdl.handle.net/11511/90346
Journal
CERAMICS INTERNATIONAL
DOI
https://doi.org/10.1016/j.ceramint.2021.01.240
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Improvement of bioactivity with dual bioceramic incorporation to nanofibrous PCL scaffolds
Altunordu, Gercem; Tezcaner, Ayşen; Evis, Zafer; Keskin, Dilek (2023-03-01)
Bone tissue injuries, diseases or related clinical interventions require bone tissue engineering (BTE) approaches for regeneration of large bone defects, especially for compromised situations. Most BTE applications in literature focused on composites of polymers with a single type of bioceramic. However, native bone matrix has various inorganic components. Accordingly, this study aimed to investigate the use of dual bioceramics in BTE scaffolds prepared by wet-electrospinning of Poly-caprolactone (PCL) and ...
Biodegradable hydroxyapatite - Polymer composites
Durucan, Caner (2001-04-01)
The fracture of bone due to trauma or due to natural aging is one of the most frequent types of tissue failures. Treatment frequently requires the implantation of ct temporary or permanent prosthesis. The implanted materials may include the components of artificial joints, plates, and screws for fracture fixation. Typically, such implants are intended only to provide structural support or to serve as templates for bone re-growth. In general they are intended to remain in place for the life of the patient or...
Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model
Gueltekin, Osman; Dal, Hüsnü; Holzapfel, Gerhard A. (2018-04-01)
A deeper understanding to predict fracture in soft biological tissues is of crucial importance to better guide and improve medical monitoring, planning of surgical interventions and risk assessment of diseases such as aortic dissection, aneurysms, atherosclerosis and tears in tendons and ligaments. In our previous contribution (Gultekin et al., 2016) we have addressed the rupture of aortic tissue by applying a holistic geometrical approach to fracture, namely the crack phase-field approach emanating from va...
Lanthanum doped dicalcium phosphate bone cements for potential use as filler for bone defects
Motameni, Ali; Alshemary, Ammar Z.; Dalgıç, Ali Deniz; Keskin, Dilek; Evis, Zafer (2021-03-01)
The bone defects arising as a result of trauma should be filled to provide a framework to support and encourage the growth of new and living bone tissues. Among the many synthetic bone graft substitutes, self-hardening calcium phosphate (CP) cements have been widely used to repair hard tissue defects. In this study, pure dical-cium phosphate (DCP) and lanthanum (La) modified dicalcium phosphate (La-DCP) bone cements were prepared based on acid/base reaction between beta-tricalcium phosphate (beta TCP) (or L...
A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (Elsevier BV, 2020-07-01)
Tissue engineering has acquired remarkable attention as an alternative strategy to treat and restore bone defects during recent years. A scaffold is a fundamental component for tissue engineering, on which cells attach, proliferate and differentiate to form new desirable functional tissue. The composition, and structural features of scaffolds, including porosity and pore size, play a fundamental role in the success of tissue-engineered construct. This review summarizes the effect of porosity and pore size o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Motameni, A. Z. Alshemary, and Z. Evis, “A review of synthesis methods, properties and use of monetite cements as filler for bone defects,”
CERAMICS INTERNATIONAL
, pp. 13245–13256, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90346.