Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated RAFT as a pH-responsive additive for mixed matrix membrane
Date
2019-03-01
Author
Ghasemi Kochameshki, Mahmoud
Mahmoudian, Mehdi
Marjani, Azam
Farhadi, Khalil
Enayati, Mojtaba
Mollayousefi, Hamed Samadi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
Incorporation of nanostructured materials into the membrane matrix is a new strategy to improve mechanical and performance properties. Graphene oxide (GO) is one of the advantageous carbon-based nanomaterials, which recently has been used extensively in this field. However, in the most cases, the surface modification of GO has been considered for the creation of new properties like a response to different stimuli such as temperature, pH, and pressure. In the present study, a well-defined poly(acrylic acid) was grafted on GO using reversible addition-fragmentation chain transfer polymerization technique. This modified GO was incorporated into the mixed matrix membrane as a pH-sensitive additive and its effect on the membrane performance was investigated. The membrane with 5 wt % of modified GO provides better hydrophilicity, flux, antifouling, and rejection properties and so the effect of pH change on the aforementioned characteristic properties was studied for this membrane. It is indicated that modified membrane shows different behaviors in acidic and alkaline conditions. In addition, excellent heavy metal separation was observed among rejection tests, especially for Hg ions. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47213.
Subject Keywords
Functional graphene oxide
,
Mixed matrix membranes
,
pH sensitive membrane
,
RAFT polymerization
URI
https://hdl.handle.net/11511/90409
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.47213
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals
Mahmoudian, Mehdi; Ghasemıkouchameshgı, Mahmoud; Hosseinzadeh, Mohammadtaghi (2018-04-01)
Incorporation of hydrophilic multifunctional compounds in to the polymeric membrane's matrix is one of the useful methods for modification of mixed matrix membranes. Therefore, in this study, preparation and properties of polyethersulfone (PES) mixed matrix membranes with hydrolyzed polymethylmethacrylate (PMMA(hyd)) grafted on graphene oxide (GO-PMMA(hyd)) is investigated as an effective additive to improve permeability and antifouling properties. In this respect, grafting of PMMA(hyd) on the GO surface is...
Polycarbonate based zeolite 4a filled mixed matrix membranes: preparation, characterization and gas separation performances
Şen, Değer; Yılmaz, Levent; Department of Chemical Engineering (2008)
Developing new membrane morphologies and modifying the existing membrane materials are required to obtain membranes with improved gas separation performances. The incorporation of zeolites and low molecular-weight additives (LMWA) into polymers are investigated as alternatives to modify the permselective properties of polymer membranes. In this study, these two alternatives were applied together to improve the separation performance of a polymeric membrane. The polycarbonate (PC) chain characteristics was a...
Electro-chemo-mechanical induced fracture modeling in proton exchange membrane water electrolysis for sustainable hydrogen production
Aldakheel, Fadi; Kandekar, Chaitanya; Bensmann, Boris; Dal, Hüsnü; Hanke-Rauschenbach, Richard (2022-10-01)
This work provides a framework for predicting fracture of catalyst coated membrane (CCM) due to coupled electro-chemo-mechanical degradation processes in proton exchange membrane water electrolysis (PEMWE) cells. Electrolysis in the catalyst layer (CL) bulk, diffusion of Hydrogen proton through the membrane (MEM), and mechanical compression at the interface with the porous transport layer (PTL) generate micro-cracks that influence the catalyst degradation. Based on our experimental observations, we propose ...
Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix
Soydas, Ozan; Sarıtaş, Afşin (2017-09-01)
In this analytical study, free vibration analyses of a 3d mixed formulation beam element are performed by adopting force-based consistent mass matrix that incorporates shear and rotary inertia effects. The force-based approach takes into account the actual distribution of mass of an element in the derivation of the mass matrix. Moreover, the force-based approach enables accurate determination of free vibration frequencies of members with varying geometry and material distribution without any need for specif...
PEM fuel cell short stack performances of silica doped nanocomposite membranes
DEVRİM, YILSER; Devrim, Huseyin (2015-06-29)
In this study, an air-cooled Proton Exchange Membrane Fuel Cell (PEMFC) short stack with Nafion/Silica nanocomposite membrane was designed and fabricated for net 100 W net power output to improve the stack performance at low relative humidity conditions. Composite membrane was prepared by solution casting method. Gas Diffusion Electrodes (GDE's) were produced by ultrasonic spray coating technique. Short stack design was based on electrochemical data obtained at 0.60 V was 0.45 A/cm(2) from performance tests...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ghasemi Kochameshki, M. Mahmoudian, A. Marjani, K. Farhadi, M. Enayati, and H. S. Mollayousefi, “Graphene oxide grafted poly(acrylic acid) synthesized via surface initiated RAFT as a pH-responsive additive for mixed matrix membrane,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 0–0, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90409.