Robust Formation Coordination of Robot Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experiments

2021-01-01
Hu, Junyan
Turgut, Ali Emre
Lennox, Barry
Arvin, Farshad
Coordination of robot swarms has received significant research interest over the last decade due to its wide real-world applications including precision agriculture, target surveillance, planetary exploration, etc. Many of these practical activities can be formulated as a formation tracking problem. This brief aims to design a robust control strategy for networked robot swarms subjected to nonlinear dynamics and unknown disturbances. Firstly, a robust adaptive formation coordination protocol is proposed for robot swarms, which utilizes only local information for tracking a dynamic target with uncertain maneuvers. A rigorous theoretical proof utilizing the Lyapunov stability approach is then provided to guarantee the control performance. Towards the end, real-time hardware experiments with wheeled mobile robots are conducted to validate the robustness and feasibility of the proposed formation coordination approach.
IEEE Transactions on Circuits and Systems II: Express Briefs

Suggestions

Design of a low-costs warm robotic system for flocking
Demir, Çağrı Ata; Turgut, Ali Emre; Department of Mechanical Engineering (2019)
Swarm robotics is an approach to the coordination of large numbers of robots. The main motivation of this thesis is to study a robotic system designed to do flocking both indoors and outdoors. A walking robot is designed parallel to this purpose. In the first part of thesis, a leg is designed to minimize the displacement of center of mass of robot in vertical axis to eliminate mechanical noise. Mechanism analysis and Matlab optimization tools are utilized in this process. Then, electronic components of robo...
Automated classification of remote sensing images using multileveled MobileNetV2 and DWT techniques
Karadal, Can Haktan; Kaya, Muhammed Çağrı; Tuncer, Turker; Dogan, Sengul; Acharya, U. Rajendra (2021-12-15)
Automated classification of remote sensing images is one of the complex issues in robotics and machine learning fields. Many models have been proposed for remote sensing image classification (RSIC) to obtain high classification performance. The objective of this study are twofold. First, to create a new space object image collection as such a dataset is not currently available. Second, propose a novel RSIC model to yield highest classification performance using our newly created dataset. Our presented autom...
Cooperative Pollution Source Exploration and Cleanup with a Bio-inspired Swarm Robot Aggregation
Sadeghi Amjadi, Arash; Raoufi, Mohsen; Turgut, Ali Emre; Broughton, George; Krajník, Tomáš; Arvin, Farshad (2021-01-01)
Using robots for exploration of extreme and hazardous environments has the potential to significantly improve human safety. For example, robotic solutions can be deployed to find the source of a chemical leakage and clean the contaminated area. This paper demonstrates a proof-of-concept bio-inspired exploration method using a swarm robotic system based on a combination of two bio-inspired behaviors: aggregation, and pheromone tracking. The main idea of the work presented is to follow pheromone trails to fin...
Performance of Automatic Scanning Microscope for Nuclear Emulsion Experiments
Güler, Ali Murat (2015-03-23)
The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA exper...
Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging
Arvin, Farshad; Watson, Simon; Turgut, Ali Emre; Espinosa, Jose; Krajnik, Tomas; Lennox, Barry (2018-12-01)
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this p...
Citation Formats
J. Hu, A. E. Turgut, B. Lennox, and F. Arvin, “Robust Formation Coordination of Robot Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experiments,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104574678&origin=inward.