Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis
Download
1-s2.0-S1873506121002166-main.pdf
Date
2021-05-01
Author
Koc, Dilara
Begentaş, Onur Can
Yurtogullari, Sukran
Temel, Musa
Akcali, Kamil Can
Demirkaya, Seref
Kiriş, Erkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
289
views
88
downloads
Cite This
Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a normal male karyotype, express pluripotency markers, and differentiate into the three germ layers. The iPSC line can serve as a valuable resource to generate cellular model systems to investigate molecular mechanisms underlying RRMS.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107157848&origin=inward
https://hdl.handle.net/11511/91092
Journal
Stem Cell Research
DOI
https://doi.org/10.1016/j.scr.2021.102370
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Generation and Characterization of Induced Pluripotent Stem Cell Lines From Multiple Sclerosis Patients and Healthy Individuals
Begentaş, Onur Can; Kiriş, Erkan; Department of Molecular Biology and Genetics (2021-9-8)
Multiple Sclerosis (MS) is an autoimmune disease characterized by inflammation, demyelination, and axonal damage resulting in neurodegeneration in the central nervous system (CNS). Relapsing-remitting MS (RRMS) is the most common form of the disease known to affect more than 2 million individuals globally, and the prevalence of the disease is increasing worldwide. As a chronic condition without a cure, RRMS manifests in a relapsing-remitting form with sporadic attacks suddenly appearing, causing neurologica...
Investigation of Glutathione S-Transferase (GST) expression and activity in mouse with Multiple Sclerosis (MS)
Arçak, Deniz; Adalı, Orhan; Evin, Emre; Department of Biology (2022-5-11)
Multiple Sclerosis (MS) of unknown etiopathogenesis is a chronic demyelinating disease of the central nervous system. It mainly destroys myelin in the brain and spinal cord. Non-traumatic injuries have been observed in this disease for young adults. Various factors affect MS, but oxidative stress is one of the most important causes of demyelination. Glutathione S- Transferases (GSTs) can be described as a versatile enzyme family of eukaryotic and prokaryotic phase II metabolic isoenzymes. They have enzymati...
INVESTIGATION OF INFLAMMATION ASSOCIATED CYP2E1 AND CYP1A1 EXPRESSION IN THE EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS MOUSE MODEL OF MULTIPLE SCLEROSIS
Solak, Damla; Adalı, Orhan; Department of Molecular Biology and Genetics (2023-1-27)
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease which affects brain and spinal cord. Myelin which wraps around the axon and its progenitor cells, oligodendrocytes, are destroyed in this disease. This results in the loss of signal transmission which leads to axonal, and eventually neuronal loss. There are various symptoms of the disease such as unstable feelings, fatigue, visual disability, muscle spasms, and walking difficulties. The etiology of the disease is still in its infancy; howeve...
Analyzing the expression patterns of vitamin D metabolizing CYP27B1 and CYP24A1 in brain tissue of vitamin D treated mice with Multiple Sclerosis (MS)
Özdoğan, Dilara; Adalı, Orhan; Evin, Emre; Department of Molecular Biology and Genetics (2022-8)
The etiopathogenesis of Multiple Sclerosis (MS), an inflammatory demyelinating autoimmune disease of the central nervous system, is still unknown. MS is a complex, recurring, and frequently progressing condition. There is a hypothesis that MS is adversely associated with the length and intensity of sunlight exposure and vitamin D concentrations since MS frequency rises with increasing latitude. A female C57BL/6 mouse model for autoimmune encephalomyelitis (EAE) was used in this investigation to examine the ...
INVESTIGATION OF EFFECTS OF VITAMIN D AND VITAMIN D METABOLIZING CYP450 ISOZYMES ON MULTIPLE SCLEROSIS PATHOPHYSIOLOGY IN ANIMAL MODEL BY MOLECULAR APPROACHES
Evin, Emre; Adalı, Orhan; Department of Biology (2021-8)
Multiple sclerosis (MS) is a complicated, recurrent, and often progressive inflammatory demyelinating autoimmune disease of the central nervous system, yet etiopathogenesis remains unsolved. MS frequency increases with increasing latitude, leading to a hypothesis that MS is inversely correlated with the duration and intensity of sunlight and vitamin D concentrations. In this study, the relationships between vitamin D supplementation, MS, VDR, and vitamin D metabolizing CYP enzymes, including CYP2R1, CYP27A1...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Koc et al., “Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis,”
Stem Cell Research
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107157848&origin=inward.