Investigation of Glutathione S-Transferase (GST) expression and activity in mouse with Multiple Sclerosis (MS)

Arçak, Deniz
Multiple Sclerosis (MS) of unknown etiopathogenesis is a chronic demyelinating disease of the central nervous system. It mainly destroys myelin in the brain and spinal cord. Non-traumatic injuries have been observed in this disease for young adults. Various factors affect MS, but oxidative stress is one of the most important causes of demyelination. Glutathione S- Transferases (GSTs) can be described as a versatile enzyme family of eukaryotic and prokaryotic phase II metabolic isoenzymes. They have enzymatic or non-enzymatic functions in the body. Their main task is to conjugate GSH to endogenous and exogenous electrophilic compounds for the detoxification process. In this study, it was aimed to reveal the relationship between the activity and protein expression of the Glutathione S-Transferase (GST) enzyme family and MS disease in a female C57BL/6 mouse autoimmune encephalomyelitis (EAE) model. There was no statistically significant difference (p ≤ 0.05) in mouse liver GST protein expression between the two groups of animals, the MS patient model and the control group. However, higher GST enzyme activity was detected in the MS group compared to the control group. In conclusion, considering the post-translational modifications affecting GST members in some pathways, this study could lead to the development of a new drug metabolized by GST that can be used in the treatment of MS and studied in detail in the future.


Evin, Emre; Adalı, Orhan; Department of Biology (2021-8)
Multiple sclerosis (MS) is a complicated, recurrent, and often progressive inflammatory demyelinating autoimmune disease of the central nervous system, yet etiopathogenesis remains unsolved. MS frequency increases with increasing latitude, leading to a hypothesis that MS is inversely correlated with the duration and intensity of sunlight and vitamin D concentrations. In this study, the relationships between vitamin D supplementation, MS, VDR, and vitamin D metabolizing CYP enzymes, including CYP2R1, CYP27A1...
Generation and Characterization of Induced Pluripotent Stem Cell Lines From Multiple Sclerosis Patients and Healthy Individuals
Begentaş, Onur Can; Kiriş, Erkan; Department of Molecular Biology and Genetics (2021-9-8)
Multiple Sclerosis (MS) is an autoimmune disease characterized by inflammation, demyelination, and axonal damage resulting in neurodegeneration in the central nervous system (CNS). Relapsing-remitting MS (RRMS) is the most common form of the disease known to affect more than 2 million individuals globally, and the prevalence of the disease is increasing worldwide. As a chronic condition without a cure, RRMS manifests in a relapsing-remitting form with sporadic attacks suddenly appearing, causing neurologica...
Association analysis of glutathione s-transferase omega 1 and omega 2 genetic polymorphisms and ischemic stroke risk in Turkish population
Bilgin, Esra; Adalı, Orhan; Department of Biochemistry (2014)
Stroke is defined as the acute neurological cerebrovascular disease based on interruptions to blood flow in the brain. These interruptions are caused by loss of blood supply due to vessel bursts or vessel blocked by clotting. Atherosclerosis, a main cause of stroke, is blockage of endothelium layer of arteries and losing the flexibility of tissue. The oxidative stress is known as a risk factor for atherosclerosis. The increased free radicals such as reactive oxygen species (ROS) and decreased antioxidant le...
Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis
Koc, Dilara; Begentaş, Onur Can; Yurtogullari, Sukran; Temel, Musa; Akcali, Kamil Can; Demirkaya, Seref; Kiriş, Erkan (2021-05-01)
Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a norma...
Association analysis of cholesterol 7-alpha hydroxylase (CYP7A1)and cholesterol 24-hydroxlase (CYP46A1) genetic polymorphisms and multiple sclerosis risk in Turkish population
Sezer, Eda; Kaya, Zeki; Department of Molecular Biology and Genetics (2019)
Multiple Sclerosis (MS) is the most common demyelinating disorder of the central nervous system. Under the effects of certain environmental factors, MS develops in genetically susceptible individuals. People with MS have significantly lower vitamin D levels. UV-B radiation catalyzes the photo-conversion of 7-dehydrocholesterol, produced in cholesterol production pathway, to vitamin D in the skin. Cholesterol 7α-hydroxylase (CYP7A1) in the liver and Cholesterol 24S-hydroxylase (CYP46A1) in the brain are resp...
Citation Formats
D. Arçak, “Investigation of Glutathione S-Transferase (GST) expression and activity in mouse with Multiple Sclerosis (MS),” M.S. - Master of Science, Middle East Technical University, 2022.